The SR Protein B52/SRp55 Is Required for DNA Topoisomerase I Recruitment to Chromatin, mRNA Release and Transcription Shutdown
DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression.
Vyšlo v časopise:
The SR Protein B52/SRp55 Is Required for DNA Topoisomerase I Recruitment to Chromatin, mRNA Release and Transcription Shutdown. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001124
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001124
Souhrn
DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression.
Zdroje
1. PanditS
WangD
FuXD
2008 Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 20 260 265
2. LunaR
GaillardH
Gonzalez-AguileraC
AguileraA
2008 Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 117 319 331
3. ZhongXY
WangP
HanJ
RosenfeldMG
FuXD
2009 SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol Cell 35 1 10
4. TaziJ
RossiF
LabourierE
GallouziI
BrunelC
1997 DNA topoisomerase I: customs officer at the border between DNA and RNA worlds? J Mol Med 75 786 800
5. PommierY
2006 Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6 789 802
6. LeppardJB
ChampouxJJ
2005 Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114 75 85
7. UemuraT
YanagidaM
1984 Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J 3 1737 1744
8. LeeMP
BrownSD
ChenA
HsiehTS
1993 DNA topoisomerase I is essential in Drosophila melanogaster. Proc Natl Acad Sci U S A 90 6656 6660
9. MorhamSG
KluckmanKD
VoulomanosN
SmithiesO
1996 Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol Cell Biol 16 6804 6809
10. BendixenC
ThomsenB
AlsnerJ
WestergaardO
1990 Camptothecin-stabilized topoisomerase I-DNA adducts cause premature termination of transcription. Biochemistry 29 5613 5619
11. BrillSJ
DiNardoS
Voelkel-MeimanK
SternglanzR
1987 Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326 414 416
12. MerinoA
MaddenKR
LaneWS
ChampouxJJ
ReinbergD
1993 DNA topoisomerase I is involved in both repression and activation of transcription. Nature 365 227 232
13. ShykindBM
KimJ
StewartL
ChampouxJJ
SharpPA
1997 Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription. Genes Dev 11 397 407
14. CapranicoG
FerriF
FogliMV
RussoA
LotitoL
2007 The effects of camptothecin on RNA polymerase II transcription: roles of DNA topoisomerase I. Biochimie 89 482 489
15. SapraAK
AnkoML
GrishinaI
LorenzM
PabisM
2009 SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol Cell 34 179 190
16. LinS
Coutinho-MansfieldG
WangD
PanditS
FuXD
2008 The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 15 819 826
17. SoretJ
GabutM
DuponC
KohlhagenG
SteveninJ
2003 Altered serine/arginine-rich protein phosphorylation and exonic enhancer-dependent splicing in Mammalian cells lacking topoisomerase I. Cancer Res 63 8203 8211
18. SoretJ
TaziJ
2003 Phosphorylation-dependent control of the pre-mRNA splicing machinery. Prog Mol Subcell Biol 31 89 126
19. TuduriS
CrabbeL
ContiC
TourriereH
Holtgreve-GrezH
2009 Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11 1315 1324
20. RossiF
LabourierE
ForneT
DivitaG
DerancourtJ
1996 Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381 80 82. 1
21. FicW
JugeF
SoretJ
TaziJ
2007 Eye development under the control of SRp55/B52-mediated alternative splicing of eyeless. PLoS ONE 2 e253. 10
22. LabourierE
BourbonHM
GallouziIE
FostierM
AllemandE
1999 Antagonism between RSF1 and SR proteins for both splice-site recognition in vitro and Drosophila development. Genes Dev 13 740 753
23. ChamplinDT
FraschM
SaumweberH
LisJT
1991 Characterization of a Drosophila protein associated with boundaries of transcriptionally active chromatin. Genes Dev 5 1611 1621
24. FleischmannG
PflugfelderG
SteinerEK
JavaherianK
HowardGC
1984 Drosophila DNA topoisomerase I is associated with transcriptionally active regions of the genome. Proc Natl Acad Sci U S A 81 6958 6962
25. ShaiuWL
HsiehTS
1998 Targeting to transcriptionally active loci by the hydrophilic N-terminal domain of Drosophila DNA topoisomerase I. Mol Cell Biol 18 4358 4367
26. ClynePJ
BrotmanJS
SweeneyST
DavisG
2003 Green fluorescent protein tagging Drosophila proteins at their native genomic loci with small P elements. Genetics 165 1433 1441
27. AndresAJ
2004 Flying through the genome: a comprehensive study of functional genomics using RNAi in Drosophila. Trends Endocrinol Metab 15 243 247
28. AndersenFF
TangeTO
SinnathambyT
OlesenJR
AndersenKE
2002 The RNA splicing factor ASF/SF2 inhibits human topoisomerase I mediated DNA relaxation
29. Kowalska-LothB
GirstunA
TrzcinskaAM
Piekielko-WitkowskaA
StaronK
2005 SF2/ASF protein binds to the cap region of human topoisomerase I through two RRM domains. Biochem Biophys Res Commun 331 398 403
30. LabourierE
RossiF
GallouziIE
AllemandE
DivitaG
1998 Interaction between the N-terminal domain of human DNA topoisomerase I and the arginine-serine domain of its substrate determines phosphorylation of SF2/ASF splicing factor. Nucleic Acids Res 26 2955 2962
31. Trzcinska-DanelutiAM
GoreckiA
CzubatyA
Kowalska-LothB
GirstunA
2007 RRM proteins interacting with the cap region of topoisomerase I. J Mol Biol 369 1098 1112
32. ShiH
HoffmanBE
LisJT
1999 RNA aptamers as effective protein antagonists in a multicellular organism. Proc Natl Acad Sci U S A 96 10033 10038
33. DiDomenicoBJ
BugaiskyGE
LindquistS
1982 The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31 593 603
34. HoffmanBE
LisJT
2000 Pre-mRNA splicing by the essential Drosophila protein B52: tissue and target specificity. Mol Cell Biol 20 181 186
35. BuszczakM
SpradlingAC
2006 The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes Dev 20 977 989
36. RossiF
LabourierE
GallouziIE
DerancourtJ
AllemandE
1998 The C-terminal domain but not the tyrosine 723 of human DNA topoisomerase I active site contributes to kinase activity. Nucleic Acids Res 26 2963 2970
37. RingHZ
LisJT
1994 The SR protein B52/SRp55 is essential for Drosophila development. Mol Cell Biol 14 7499 7506
38. BlanchetteM
GreenRE
BrennerSE
RioDC
2005 Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev 19 1306 1314
39. BrillSJ
SternglanzR
1988 Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutants. Cell 54 403 411
40. ChoderM
1991 A general topoisomerase I-dependent transcriptional repression in the stationary phase in yeast. Genes Dev 5 2315 2326
41. ZhangCX
ChenAD
GettelNJ
HsiehTS
2000 Essential functions of DNA topoisomerase I in Drosophila melanogaster. Dev Biol 222 27 40
42. ShiY
MosserDD
MorimotoRI
1998 Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12 654 666
43. DasR
YuJ
ZhangZ
GygiMP
KrainerAR
2007 SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol Cell 26 867 881
44. ListermanI
SapraAK
NeugebauerKM
2006 Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 13 815 822
45. CzubatyA
GirstunA
Kowalska-LothB
TrzcinskaAM
PurtaE
2005 Proteomic analysis of complexes formed by human topoisomerase I. Biochim Biophys Acta 1749 133 141
46. MongelardF
BouvetP
2007 Nucleolin: a multiFACeTed protein. Trends Cell Biol 17 80 86
47. ChristmanMF
DietrichFS
LevinNA
SadoffBU
FinkGR
1993 The rRNA-encoding DNA array has an altered structure in topoisomerase I mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 90 7637 7641
48. PommierY
PourquierP
FanY
StrumbergD
1998 Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1400 83 105
49. AguileraA
Gomez-GonzalezB
2008 Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9 204 217
50. DroletM
BroccoliS
RalluF
HraikyC
FortinC
2003 The problem of hypernegative supercoiling and R-loop formation in transcription. Front Biosci 8 d210 d221
51. LiX
ManleyJL
2006 Cotranscriptional processes and their influence on genome stability. Genes Dev 20 1838 1847
52. LiX
ManleyJL
2005 New talents for an old acquaintance: the SR protein splicing factor ASF/SF2 functions in the maintenance of genome stability. Cell Cycle 4 1706 1708
53. LaiMC
TarnWY
2004 Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins. J Biol Chem 279 31745 31749
54. BraunIC
HeroldA
RodeM
IzaurraldeE
2002 Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15. Mol Cell Biol 22 5405 5418
55. TaziJ
BakkourN
SoretJ
ZekriL
HazraB
2005 Selective inhibition of topoisomerase I and various steps of spliceosome assembly by diospyrin derivatives. Mol Pharmacol 67 1186 1194
56. HolmesWF
BraastadCD
MitraP
HampeC
DoeneckeD
2005 Coordinate control and selective expression of the full complement of replication-dependent histone H4 genes in normal and cancer cells. J Biol Chem 280 37400 37407
57. SuC
GaoG
SchneiderS
HeltC
WeissC
2004 DNA damage induces downregulation of histone gene expression through the G1 checkpoint pathway. EMBO J 23 1133 1143
58. MiaoZH
PlayerA
ShankavaramU
WangYH
ZimonjicDB
2007 Nonclassic functions of human topoisomerase I: genome-wide and pharmacologic analyses. Cancer Res 67 8752 8761 67/18/8752
59. LavrovS
DejardinJ
CavalliG
2004 Combined immunostaining and FISH analysis of polytene chromosomes. Methods Mol Biol 247 289 303
60. RichterL
BoneJR
KurodaMI
1996 RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1 325 336
61. FrankeA
BakerBS
1999 The rox1 and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol Cell 4 117 122
62. BoehmAK
SaundersA
WernerJ
LisJT
2003 Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 23 7628 7637
63. ZhangZ
GilmourDS
2006 Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol Cell 21 65 74
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Synthesizing and Salvaging NAD: Lessons Learned from
- Optimal Strategy for Competence Differentiation in Bacteria
- Long- and Short-Term Selective Forces on Malaria Parasite Genomes
- Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data