#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The SR Protein B52/SRp55 Is Required for DNA Topoisomerase I Recruitment to Chromatin, mRNA Release and Transcription Shutdown


DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression.


Vyšlo v časopise: The SR Protein B52/SRp55 Is Required for DNA Topoisomerase I Recruitment to Chromatin, mRNA Release and Transcription Shutdown. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001124
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001124

Souhrn

DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression.


Zdroje

1. PanditS

WangD

FuXD

2008 Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 20 260 265

2. LunaR

GaillardH

Gonzalez-AguileraC

AguileraA

2008 Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 117 319 331

3. ZhongXY

WangP

HanJ

RosenfeldMG

FuXD

2009 SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol Cell 35 1 10

4. TaziJ

RossiF

LabourierE

GallouziI

BrunelC

1997 DNA topoisomerase I: customs officer at the border between DNA and RNA worlds? J Mol Med 75 786 800

5. PommierY

2006 Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6 789 802

6. LeppardJB

ChampouxJJ

2005 Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114 75 85

7. UemuraT

YanagidaM

1984 Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J 3 1737 1744

8. LeeMP

BrownSD

ChenA

HsiehTS

1993 DNA topoisomerase I is essential in Drosophila melanogaster. Proc Natl Acad Sci U S A 90 6656 6660

9. MorhamSG

KluckmanKD

VoulomanosN

SmithiesO

1996 Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol Cell Biol 16 6804 6809

10. BendixenC

ThomsenB

AlsnerJ

WestergaardO

1990 Camptothecin-stabilized topoisomerase I-DNA adducts cause premature termination of transcription. Biochemistry 29 5613 5619

11. BrillSJ

DiNardoS

Voelkel-MeimanK

SternglanzR

1987 Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326 414 416

12. MerinoA

MaddenKR

LaneWS

ChampouxJJ

ReinbergD

1993 DNA topoisomerase I is involved in both repression and activation of transcription. Nature 365 227 232

13. ShykindBM

KimJ

StewartL

ChampouxJJ

SharpPA

1997 Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription. Genes Dev 11 397 407

14. CapranicoG

FerriF

FogliMV

RussoA

LotitoL

2007 The effects of camptothecin on RNA polymerase II transcription: roles of DNA topoisomerase I. Biochimie 89 482 489

15. SapraAK

AnkoML

GrishinaI

LorenzM

PabisM

2009 SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol Cell 34 179 190

16. LinS

Coutinho-MansfieldG

WangD

PanditS

FuXD

2008 The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 15 819 826

17. SoretJ

GabutM

DuponC

KohlhagenG

SteveninJ

2003 Altered serine/arginine-rich protein phosphorylation and exonic enhancer-dependent splicing in Mammalian cells lacking topoisomerase I. Cancer Res 63 8203 8211

18. SoretJ

TaziJ

2003 Phosphorylation-dependent control of the pre-mRNA splicing machinery. Prog Mol Subcell Biol 31 89 126

19. TuduriS

CrabbeL

ContiC

TourriereH

Holtgreve-GrezH

2009 Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11 1315 1324

20. RossiF

LabourierE

ForneT

DivitaG

DerancourtJ

1996 Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381 80 82. 1

21. FicW

JugeF

SoretJ

TaziJ

2007 Eye development under the control of SRp55/B52-mediated alternative splicing of eyeless. PLoS ONE 2 e253. 10

22. LabourierE

BourbonHM

GallouziIE

FostierM

AllemandE

1999 Antagonism between RSF1 and SR proteins for both splice-site recognition in vitro and Drosophila development. Genes Dev 13 740 753

23. ChamplinDT

FraschM

SaumweberH

LisJT

1991 Characterization of a Drosophila protein associated with boundaries of transcriptionally active chromatin. Genes Dev 5 1611 1621

24. FleischmannG

PflugfelderG

SteinerEK

JavaherianK

HowardGC

1984 Drosophila DNA topoisomerase I is associated with transcriptionally active regions of the genome. Proc Natl Acad Sci U S A 81 6958 6962

25. ShaiuWL

HsiehTS

1998 Targeting to transcriptionally active loci by the hydrophilic N-terminal domain of Drosophila DNA topoisomerase I. Mol Cell Biol 18 4358 4367

26. ClynePJ

BrotmanJS

SweeneyST

DavisG

2003 Green fluorescent protein tagging Drosophila proteins at their native genomic loci with small P elements. Genetics 165 1433 1441

27. AndresAJ

2004 Flying through the genome: a comprehensive study of functional genomics using RNAi in Drosophila. Trends Endocrinol Metab 15 243 247

28. AndersenFF

TangeTO

SinnathambyT

OlesenJR

AndersenKE

2002 The RNA splicing factor ASF/SF2 inhibits human topoisomerase I mediated DNA relaxation

29. Kowalska-LothB

GirstunA

TrzcinskaAM

Piekielko-WitkowskaA

StaronK

2005 SF2/ASF protein binds to the cap region of human topoisomerase I through two RRM domains. Biochem Biophys Res Commun 331 398 403

30. LabourierE

RossiF

GallouziIE

AllemandE

DivitaG

1998 Interaction between the N-terminal domain of human DNA topoisomerase I and the arginine-serine domain of its substrate determines phosphorylation of SF2/ASF splicing factor. Nucleic Acids Res 26 2955 2962

31. Trzcinska-DanelutiAM

GoreckiA

CzubatyA

Kowalska-LothB

GirstunA

2007 RRM proteins interacting with the cap region of topoisomerase I. J Mol Biol 369 1098 1112

32. ShiH

HoffmanBE

LisJT

1999 RNA aptamers as effective protein antagonists in a multicellular organism. Proc Natl Acad Sci U S A 96 10033 10038

33. DiDomenicoBJ

BugaiskyGE

LindquistS

1982 The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31 593 603

34. HoffmanBE

LisJT

2000 Pre-mRNA splicing by the essential Drosophila protein B52: tissue and target specificity. Mol Cell Biol 20 181 186

35. BuszczakM

SpradlingAC

2006 The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes Dev 20 977 989

36. RossiF

LabourierE

GallouziIE

DerancourtJ

AllemandE

1998 The C-terminal domain but not the tyrosine 723 of human DNA topoisomerase I active site contributes to kinase activity. Nucleic Acids Res 26 2963 2970

37. RingHZ

LisJT

1994 The SR protein B52/SRp55 is essential for Drosophila development. Mol Cell Biol 14 7499 7506

38. BlanchetteM

GreenRE

BrennerSE

RioDC

2005 Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev 19 1306 1314

39. BrillSJ

SternglanzR

1988 Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutants. Cell 54 403 411

40. ChoderM

1991 A general topoisomerase I-dependent transcriptional repression in the stationary phase in yeast. Genes Dev 5 2315 2326

41. ZhangCX

ChenAD

GettelNJ

HsiehTS

2000 Essential functions of DNA topoisomerase I in Drosophila melanogaster. Dev Biol 222 27 40

42. ShiY

MosserDD

MorimotoRI

1998 Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12 654 666

43. DasR

YuJ

ZhangZ

GygiMP

KrainerAR

2007 SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol Cell 26 867 881

44. ListermanI

SapraAK

NeugebauerKM

2006 Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 13 815 822

45. CzubatyA

GirstunA

Kowalska-LothB

TrzcinskaAM

PurtaE

2005 Proteomic analysis of complexes formed by human topoisomerase I. Biochim Biophys Acta 1749 133 141

46. MongelardF

BouvetP

2007 Nucleolin: a multiFACeTed protein. Trends Cell Biol 17 80 86

47. ChristmanMF

DietrichFS

LevinNA

SadoffBU

FinkGR

1993 The rRNA-encoding DNA array has an altered structure in topoisomerase I mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 90 7637 7641

48. PommierY

PourquierP

FanY

StrumbergD

1998 Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1400 83 105

49. AguileraA

Gomez-GonzalezB

2008 Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9 204 217

50. DroletM

BroccoliS

RalluF

HraikyC

FortinC

2003 The problem of hypernegative supercoiling and R-loop formation in transcription. Front Biosci 8 d210 d221

51. LiX

ManleyJL

2006 Cotranscriptional processes and their influence on genome stability. Genes Dev 20 1838 1847

52. LiX

ManleyJL

2005 New talents for an old acquaintance: the SR protein splicing factor ASF/SF2 functions in the maintenance of genome stability. Cell Cycle 4 1706 1708

53. LaiMC

TarnWY

2004 Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins. J Biol Chem 279 31745 31749

54. BraunIC

HeroldA

RodeM

IzaurraldeE

2002 Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15. Mol Cell Biol 22 5405 5418

55. TaziJ

BakkourN

SoretJ

ZekriL

HazraB

2005 Selective inhibition of topoisomerase I and various steps of spliceosome assembly by diospyrin derivatives. Mol Pharmacol 67 1186 1194

56. HolmesWF

BraastadCD

MitraP

HampeC

DoeneckeD

2005 Coordinate control and selective expression of the full complement of replication-dependent histone H4 genes in normal and cancer cells. J Biol Chem 280 37400 37407

57. SuC

GaoG

SchneiderS

HeltC

WeissC

2004 DNA damage induces downregulation of histone gene expression through the G1 checkpoint pathway. EMBO J 23 1133 1143

58. MiaoZH

PlayerA

ShankavaramU

WangYH

ZimonjicDB

2007 Nonclassic functions of human topoisomerase I: genome-wide and pharmacologic analyses. Cancer Res 67 8752 8761 67/18/8752

59. LavrovS

DejardinJ

CavalliG

2004 Combined immunostaining and FISH analysis of polytene chromosomes. Methods Mol Biol 247 289 303

60. RichterL

BoneJR

KurodaMI

1996 RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1 325 336

61. FrankeA

BakerBS

1999 The rox1 and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol Cell 4 117 122

62. BoehmAK

SaundersA

WernerJ

LisJT

2003 Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 23 7628 7637

63. ZhangZ

GilmourDS

2006 Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol Cell 21 65 74

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#