The Metabolic Enzyme ManA Reveals a Link between Cell Wall Integrity and Chromosome Morphology
Synchronizing cell growth, division and DNA replication is an essential property of all living cells. Accurate coordination of these cellular events is especially crucial for bacteria, which can grow rapidly and undergo multifork replication. Here we show that the metabolic protein ManA, which is a component of mannose phosphotransferase system, participates in cell wall construction of the rod shaped bacterium Bacillus subtilis. When growing rapidly, cells lacking ManA exhibit aberrant cell wall architecture, polyploidy and abnormal chromosome morphologies. We demonstrate that these cellular defects are derived from the role played by ManA in cell wall formation. Furthermore, we show that ManA is required for maintaining the proper carbohydrate composition of the cell wall, particularly of teichoic acid constituents. This perturbed cell wall synthesis causes asynchrony between cell wall elongation, division and nucleoid segregation.
Vyšlo v časopise:
The Metabolic Enzyme ManA Reveals a Link between Cell Wall Integrity and Chromosome Morphology. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001119
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001119
Souhrn
Synchronizing cell growth, division and DNA replication is an essential property of all living cells. Accurate coordination of these cellular events is especially crucial for bacteria, which can grow rapidly and undergo multifork replication. Here we show that the metabolic protein ManA, which is a component of mannose phosphotransferase system, participates in cell wall construction of the rod shaped bacterium Bacillus subtilis. When growing rapidly, cells lacking ManA exhibit aberrant cell wall architecture, polyploidy and abnormal chromosome morphologies. We demonstrate that these cellular defects are derived from the role played by ManA in cell wall formation. Furthermore, we show that ManA is required for maintaining the proper carbohydrate composition of the cell wall, particularly of teichoic acid constituents. This perturbed cell wall synthesis causes asynchrony between cell wall elongation, division and nucleoid segregation.
Zdroje
1. FosterSJ
PophamDL
2002 Bacillus subtilis and its closest relatives.
SonensheinAL
HochJA
LosickRL
Washington, DC ASM Press 21 42
2. van HeijenoortJ
2007 Lipid intermediates in the biosynthesis of bacterial peptidoglycan. Microbiol Mol Biol Rev 71 620 635
3. BouhssA
TrunkfieldAE
BuggTD
Mengin-LecreulxD
2008 The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32 208 233
4. van DamV
OlrichsN
BreukinkE
2009 Specific labeling of peptidoglycan precursors as a tool for bacterial cell wall studies. Chembiochem 10 617 624
5. DanielRA
ErringtonJ
2003 Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113 767 776
6. FormstoneA
ErringtonJ
2005 A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis. Mol Microbiol 55 1646 1657
7. TiyanontK
DoanT
LazarusMB
FangX
RudnerDZ
2006 Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. Proc Natl Acad Sci U S A 103 11033 11038
8. VarmaA
de PedroMA
YoungKD
2007 FtsZ directs a second mode of peptidoglycan synthesis in Escherichia coli. J Bacteriol 189 5692 5704
9. HayhurstEJ
KailasL
HobbsJK
FosterSJ
2008 Cell wall peptidoglycan architecture in Bacillus subtilis. Proc Natl Acad Sci U S A 105 14603 14608
10. CabeenMT
Jacobs-WagnerC
2007 Skin and bones: the bacterial cytoskeleton, cell wall, and cell morphogenesis. J Cell Biol 179 381 387
11. Carballido-LopezR
ErringtonJ
2003 The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev Cell 4 19 28
12. Defeu SoufoHJ
GraumannPL
2006 Dynamic localization and interaction with other Bacillus subtilis actin-like proteins are important for the function of MreB. Mol Microbiol 62 1340 1356
13. FiggeRM
DivakaruniAV
GoberJW
2004 MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51 1321 1332
14. GitaiZ
DyeN
ShapiroL
2004 An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A 101 8643 8648
15. JonesLJ
Carballido-LopezR
ErringtonJ
2001 Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104 913 922
16. KimSJ
CegelskiL
PreobrazhenskayaM
SchaeferJ
2006 Structures of Staphylococcus aureus cell-wall complexes with vancomycin, eremomycin, and chloroeremomycin derivatives by 13C{19F} and 15N{19F} rotational-echo double resonance. Biochemistry 45 5235 5250
17. Carballido-LopezR
FormstoneA
LiY
EhrlichSD
NoirotP
2006 Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. Dev Cell 11 399 409
18. BendezuFO
de BoerPA
2008 Conditional lethality, division defects, membrane involution, and endocytosis in mre and mrd shape mutants of Escherichia coli. J Bacteriol 190 1792 1811
19. HenriquesAO
GlaserP
PiggotPJ
MoranCPJr
1998 Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol Microbiol 28 235 247
20. KruseT
Bork-JensenJ
GerdesK
2005 The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol 55 78 89
21. KruseT
Moller-JensenJ
Lobner-OlesenA
GerdesK
2003 Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J 22 5283 5292
22. BhavsarAP
BrownED
2006 Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol Microbiol 60 1077 1090
23. BurgerMM
GlaserL
1964 The Synthesis of Teichoic Acids. I. Polyglycerophosphate. J Biol Chem 239 3168 3177
24. GlaserL
BurgerMM
1964 The Synthesis of Teichoic Acids. 3. Glucosylation of Polyglycerophosphate. J Biol Chem 239 3187 3191
25. DuckworthM
ArchibaldAR
BaddileyJ
1972 The location of N-acetylgalactosamine in the walls of Bacillus subtilis 168. Biochem J 130 691 696
26. ShibaevVN
DuckworthM
ArchibaldAR
BaddileyJ
1973 The structure of a polymer containing galactosamine from walls of Bacillus subtilis 168. Biochem J 135 383 384
27. FormstoneA
Carballido-LopezR
NoirotP
ErringtonJ
ScheffersDJ
2008 Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. J Bacteriol 190 1812 1821
28. BhavsarAP
BeveridgeTJ
BrownED
2001 Precise deletion of tagD and controlled depletion of its product, glycerol 3-phosphate cytidylyltransferase, leads to irregular morphology and lysis of Bacillus subtilis grown at physiological temperature. J Bacteriol 183 6688 6693
29. D'EliaMA
MillarKE
BeveridgeTJ
BrownED
2006 Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J Bacteriol 188 8313 8316
30. SchirnerK
Marles-WrightJ
LewisRJ
ErringtonJ
2009 Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J 28 830 842
31. SoldoB
LazarevicV
PooleyHM
KaramataD
2002 Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH) encodes the UDP-N-acetylglucosamine 2-epimerase. J Bacteriol 184 4316 4320
32. CleasbyA
WonacottA
SkarzynskiT
HubbardRE
DaviesGJ
1996 The x-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 angstrom resolution. Nat Struct Biol 3 470 479
33. GlaserP
SharpeME
RaetherB
PeregoM
OhlsenK
1997 Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev 11 1160 1168
34. LinDC
GrossmanAD
1998 Identification and characterization of a bacterial chromosome partitioning site. Cell 92 675 685
35. LinDC
LevinPA
GrossmanAD
1997 Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc Natl Acad Sci U S A 94 4721 4726
36. SullivanNL
MarquisKA
RudnerDZ
2009 Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137 697 707
37. WangJD
SandersGM
GrossmanAD
2007 Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128 865 875
38. CooperS
HelmstetterCE
1968 Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31 519 540
39. BruandC
EhrlichSD
JanniereL
1995 Primosome assembly site in Bacillus subtilis. EMBO J 14 2642 2650
40. OgasawaraN
MoriyaS
MazzaPG
YoshikawaH
1986 Nucleotide sequence and organization of dnaB gene and neighbouring genes on the Bacillus subtilis chromosome. Nucleic Acids Res 14 9989 9999
41. WeartRB
LevinPA
2003 Growth rate-dependent regulation of medial FtsZ ring formation. J Bacteriol 185 2826 2834
42. BrandishPE
KimuraKI
InukaiM
SouthgateR
LonsdaleJT
1996 Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrob Agents Chemother 40 1640 1644
43. PooleyHM
KaramataD
2000 Incorporation of [2-3H] glycerol into cell surface components of Bacillus subtilis 168 and thermosensitive mutants affected in wall teichoic acid synthesis: effect of tunicamycin. Microbiology 146 (Pt 4) 797 805
44. LeoffC
SaileE
SueD
WilkinsP
QuinnCP
2008 Cell wall carbohydrate compositions of strains from the Bacillus cereus group of species correlate with phylogenetic relatedness. J Bacteriol 190 112 121
45. BerlatzkyIA
RouvinskiA
Ben-YehudaS
2008 Spatial organization of a replicating bacterial chromosome. Proc Natl Acad Sci U S A 105 14136 14140
46. LeaverM
Dominguez-CuevasP
CoxheadJM
DanielRA
ErringtonJ
2009 Life without a wall or division machine in Bacillus subtilis. Nature 457 849 853
47. WaterhouseRN
AllanEJ
AmijeeF
UndrillVJ
GloverLA
1994 An investigation of enumeration and DNA partitioning in Bacillus subtilis L-form bacteria. J Appl Bacteriol 77 497 503
48. WuB
ZhangY
ZhengR
GuoC
WangPG
2002 Bifunctional phosphomannose isomerase/GDP-D-mannose pyrophosphorylase is the point of control for GDP-D-mannose biosynthesis in Helicobacter pylori. FEBS Lett 519 87 92
49. DeutscherJ
GalinierA
Martin-VerstraeteI
2002 Bacillus subtilis and its closest relatives;
SonensheinAL
HochJA
LosickRL
Washington, DC ASM Press
50. FangW
YuX
WangB
ZhouH
OuyangH
2009 Characterization of the Aspergillus fumigatus phosphomannose isomerase Pmi1 and its impact on cell wall synthesis and morphogenesis. Microbiology 155 3281 3293
51. CabreraJE
CaglieroC
QuanS
SquiresCL
JinDJ
2009 Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion. J Bacteriol 191 4180 4185
52. WoldringhCL
2002 The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol 45 17 29
53. GerdesK
2009 RodZ, a new player in bacterial cell morphogenesis. EMBO J 28 171 172
54. BendezuFO
HaleCA
BernhardtTG
de BoerPA
2009 RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J 28 193 204
55. ShiomiD
SakaiM
NikiH
2008 Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J 27 3081 3091
56. AlyahyaSA
AlexanderR
CostaT
HenriquesAO
EmonetT
2009 RodZ, a component of the bacterial core morphogenic apparatus. Proc Natl Acad Sci U S A 106 1239 1244
57. EspeliO
NurseP
LevineC
LeeC
MariansKJ
2003 SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli. Mol Microbiol 50 495 509
58. LiuJY
MillerPF
WillardJ
OlsonER
1999 Functional and biochemical characterization of Escherichia coli sugar efflux transporters. J Biol Chem 274 22977 22984
59. WeartRB
LeeAH
ChienAC
HaeusserDP
HillNS
2007 A metabolic sensor governing cell size in bacteria. Cell 130 335 347
60. BuggTD
BrandishPE
1994 From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol Lett 119 255 262
61. PriceNP
MomanyFA
2005 Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology 15 29R 42R
62. HeleniusA
AebiM
2001 Intracellular functions of N-linked glycans. Science 291 2364 2369
63. HeifetzA
KeenanRW
ElbeinAD
1979 Mechanism of action of tunicamycin on the UDP-GlcNAc:dolichyl-phosphate Glc-NAc-1-phosphate transferase. Biochemistry 18 2186 2192
64. LehrmanMA
2001 Oligosaccharide-based information in endoplasmic reticulum quality control and other biological systems. J Biol Chem 276 8623 8626
65. YoungmanP
PerkinsJB
LosickR
1984 Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid 12 1 9
66. HarwoodCR
CuttingSM
1990 Molecular biological methods for Bacillus. Chichester; New York Wiley. xxxv 581 p
67. VasanthaN
FreeseE
1980 Enzyme changes during Bacillus subtilis sporulation caused by deprivation of guanine nucleotides. J Bacteriol 144 1119 1125
68. KearnsDB
ChuF
RudnerR
LosickR
2004 Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52 357 369
69. SteinmetzM
RichterR
1994 Easy cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome. J Bacteriol 176 1761 1763
70. Bejerano-SagieM
Oppenheimer-ShaananY
BerlatzkyI
RouvinskiA
MeyerovichM
2006 A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis. Cell 125 679 690
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Synthesizing and Salvaging NAD: Lessons Learned from
- Optimal Strategy for Competence Differentiation in Bacteria
- Long- and Short-Term Selective Forces on Malaria Parasite Genomes
- Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data