#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dementia Revealed: Novel Chromosome 6 Locus for Late-Onset Alzheimer Disease Provides Genetic Evidence for Folate-Pathway Abnormalities


Genome-wide association studies (GWAS) of late-onset Alzheimer disease (LOAD) have consistently observed strong evidence of association with polymorphisms in APOE. However, until recently, variants at few other loci with statistically significant associations have replicated across studies. The present study combines data on 483,399 single nucleotide polymorphisms (SNPs) from a previously reported GWAS of 492 LOAD cases and 496 controls and from an independent set of 439 LOAD cases and 608 controls to strengthen power to identify novel genetic association signals. Associations exceeding the experiment-wide significance threshold () were replicated in an additional 1,338 cases and 2,003 controls. As expected, these analyses unequivocally confirmed APOE's risk effect (rs2075650, ). Additionally, the SNP rs11754661 at 151.2 Mb of chromosome 6q25.1 in the gene MTHFD1L (which encodes the methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like protein) was significantly associated with LOAD (; Bonferroni-corrected P = 0.022). Subsequent genotyping of SNPs in high linkage disequilibrium () with rs11754661 identified statistically significant associations in multiple SNPs (rs803424, P = 0.016; rs2073067, P = 0.03; rs2072064, P = 0.035), reducing the likelihood of association due to genotyping error. In the replication case-control set, we observed an association of rs11754661 in the same direction as the previous association at P = 0.002 ( in combined analysis of discovery and replication sets), with associations of similar statistical significance at several adjacent SNPs (rs17349743, P = 0.005; rs803422, P = 0.004). In summary, we observed and replicated a novel statistically significant association in MTHFD1L, a gene involved in the tetrahydrofolate synthesis pathway. This finding is noteworthy, as MTHFD1L may play a role in the generation of methionine from homocysteine and influence homocysteine-related pathways and as levels of homocysteine are a significant risk factor for LOAD development.


Vyšlo v časopise: Dementia Revealed: Novel Chromosome 6 Locus for Late-Onset Alzheimer Disease Provides Genetic Evidence for Folate-Pathway Abnormalities. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001130
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001130

Souhrn

Genome-wide association studies (GWAS) of late-onset Alzheimer disease (LOAD) have consistently observed strong evidence of association with polymorphisms in APOE. However, until recently, variants at few other loci with statistically significant associations have replicated across studies. The present study combines data on 483,399 single nucleotide polymorphisms (SNPs) from a previously reported GWAS of 492 LOAD cases and 496 controls and from an independent set of 439 LOAD cases and 608 controls to strengthen power to identify novel genetic association signals. Associations exceeding the experiment-wide significance threshold () were replicated in an additional 1,338 cases and 2,003 controls. As expected, these analyses unequivocally confirmed APOE's risk effect (rs2075650, ). Additionally, the SNP rs11754661 at 151.2 Mb of chromosome 6q25.1 in the gene MTHFD1L (which encodes the methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like protein) was significantly associated with LOAD (; Bonferroni-corrected P = 0.022). Subsequent genotyping of SNPs in high linkage disequilibrium () with rs11754661 identified statistically significant associations in multiple SNPs (rs803424, P = 0.016; rs2073067, P = 0.03; rs2072064, P = 0.035), reducing the likelihood of association due to genotyping error. In the replication case-control set, we observed an association of rs11754661 in the same direction as the previous association at P = 0.002 ( in combined analysis of discovery and replication sets), with associations of similar statistical significance at several adjacent SNPs (rs17349743, P = 0.005; rs803422, P = 0.004). In summary, we observed and replicated a novel statistically significant association in MTHFD1L, a gene involved in the tetrahydrofolate synthesis pathway. This finding is noteworthy, as MTHFD1L may play a role in the generation of methionine from homocysteine and influence homocysteine-related pathways and as levels of homocysteine are a significant risk factor for LOAD development.


Zdroje

1. Alzheimer's Association 2009 2009 Alzheimer's Disease Facts and Figures. Washington, D.C.

2. HebertLE

ScherrPA

BieniasJL

BennettDA

EvansDA

2003 Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60 1119 1122

3. GoateA

Chartier-HarlinMC

MullanM

BrownJ

CrawfordF

1991 Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349 704 706

4. SherringtonR

RogaevEI

LiangY

RogaevaEA

LevesqueG

1995 Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375 754 760

5. Levy-LahadE

LahadA

WijsmanEM

BirdTD

SchellenbergGD

1995 Apolipoprotein E genotypes and age of onset in early-onset familial Alzheimer's disease. Ann Neurol 38 678 680

6. Levy-LahadE

WascoW

PoorkajP

RomanoDM

OshimaJ

1995 Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269 973 977

7. RogaevEI

SherringtonR

RogaevaEA

LevesqueG

IkedaM

1995 Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376 775 778

8. SaundersAM

StrittmatterWJ

SchmechelD

George-HyslopPH

Pericak-VanceMA

1993 Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43 1467 1472

9. CorderEH

SaundersAM

StrittmatterWJ

SchmechelDE

GaskellPC

1993 Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261 921 923

10. StrittmatterWJ

SaundersAM

SchmechelD

Pericak-VanceM

EnghildJ

1993 Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90 1977 1981

11. GatzM

PedersenNL

BergS

JohanssonB

JohanssonK

1997 Heritability for Alzheimer's disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci 52 M117 125

12. HuangW

QiuC

von StraussE

WinbladB

FratiglioniL

2004 APOE genotype, family history of dementia, and Alzheimer disease risk: a 6-year follow-up study. Arch Neurol 61 1930 1934

13. GrupeA

AbrahamR

LiY

RowlandC

HollingworthP

2007 Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants. Hum Mol Genet 16 865 873

14. CoonKD

MyersAJ

CraigDW

WebsterJA

PearsonJV

2007 A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer's disease. J Clin Psychiatry 68 613 618

15. ReimanEM

WebsterJA

MyersAJ

HardyJ

DunckleyT

2007 GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. Neuron 54 713 720

16. AbrahamR

MoskvinaV

SimsR

HollingworthP

MorganA

2008 A genome-wide association study for late-onset Alzheimer's disease using DNA pooling. BMC Med Genomics 1 44

17. BertramL

LangeC

MullinK

ParkinsonM

HsiaoM

2008 Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE. Am J Hum Genet 83 623 632

18. BeechamGW

MartinER

LiYJ

SliferMA

GilbertJR

2009 Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet 84 35 43

19. CarrasquilloMM

ZouF

PankratzVS

WilcoxSL

MaL

2009 Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer's disease. Nat Genet 41 192 198

20. LambertJC

HeathS

EvenG

CampionD

SleegersK

2009 Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41 1094 1099

21. HaroldD

AbrahamR

HollingworthP

SimsR

GerrishA

2009 Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41 1088 1093

22. SeshadriS

FitzpatrickAL

IkramMA

DeStefanoAL

GudnasonV

2010 Genome-wide analysis of genetic loci associated with Alzheimer disease. Jama 303 1832 1840

23. LiH

WettenS

LiL

St JeanPL

UpmanyuR

2008 Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol 65 45 53

24. AltshulerD

DalyMJ

LanderES

2008 Genetic mapping in human disease. Science 322 881 888

25. Welcome Trust Case Control Consortium 2007 Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447 661 678

26. PikeST

RajendraR

ArtztK

ApplingDR

2010 Mitochondrial C1-Tetrahydrofolate Synthase (MTHFD1L) Supports the Flow of Mitochondrial One-carbon Units into the Methyl Cycle in Embryos. J Biol Chem 285 4612 4620

27. Van DamF

Van GoolWA

2009 Hyperhomocysteinemia and Alzheimer's disease: A systematic review. Arch Gerontol Geriatr 48 425 430

28. MorrisMS

2003 Homocysteine and Alzheimer's disease. Lancet Neurol 2 425 428

29. HerrmannW

KnappJP

2002 Hyperhomocysteinemia: a new risk factor for degenerative diseases. Clin Lab 48 471 481

30. RobertsJM

CooperDW

2001 Pathogenesis and genetics of pre-eclampsia. Lancet 357 53 56

31. de LuisDA

FernandezN

ArranzML

AllerR

IzaolaO

2005 Total homocysteine levels relation with chronic complications of diabetes, body composition, and other cardiovascular risk factors in a population of patients with diabetes mellitus type 2. J Diabetes Complications 19 42 46

32. ArnesenE

RefsumH

BonaaKH

UelandPM

FordeOH

1995 Serum total homocysteine and coronary heart disease. Int J Epidemiol 24 704 709

33. SamaniNJ

ErdmannJ

HallAS

HengstenbergC

ManginoM

2007 Genomewide association analysis of coronary artery disease. N Engl J Med 357 443 453

34. SnowdonDA

GreinerLH

MortimerJA

RileyKP

GreinerPA

1997 Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. Jama 277 813 817

35. HoPI

OrtizD

RogersE

SheaTB

2002 Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res 70 694 702

36. McCaddonA

ReglandB

HudsonP

DaviesG

2002 Functional vitamin B(12) deficiency and Alzheimer disease. Neurology 58 1395 1399

37. McCaddonA

HudsonP

HillD

BarberJ

LloydA

2003 Alzheimer's disease and total plasma aminothiols. Biol Psychiatry 53 254 260

38. MattsonMP

SheaTB

2003 Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26 137 146

39. MartinB

BrennemanR

BeckerKG

GucekM

ColeRN

2008 iTRAQ analysis of complex proteome alterations in 3xTgAD Alzheimer's mice: understanding the interface between physiology and disease. PLoS One 3 e2750 doi:10.1371/journal.pone.0002750

40. HasegawaT

MikodaN

KitazawaM

LaFerlaFM

2010 Treatment of Alzheimer's disease with anti-homocysteic acid antibody in 3xTg-AD male mice. PLoS One 5 e8593 doi:10.1371/journal.pone.0008593

41. OlsonJM

GoddardKA

DudekDM

2002 A second locus for very-late-onset Alzheimer disease: a genome scan reveals linkage to 20p and epistasis between 20p and the amyloid precursor protein region. Am J Hum Genet 71 154 161

42. BlackerD

BertramL

SaundersAJ

MoscarilloTJ

AlbertMS

2003 Results of a high-resolution genome screen of 437 Alzheimer's disease families. Hum Mol Genet 12 23 32

43. BeechamGW

NajAC

GilbertJR

HainesJL

BuxbaumJD

2010 PCDH11X variation is not associated with late-onset Alzheimer disease susceptibility. Psychiatr Genet In press

44. CapenEC

ClappRV

CampbellWM

1971 Competitive Bidding in High-Risk Situations. Journal of Petroleum Technology 23 641 653

45. LeeJH

ChengR

SantanaV

WilliamsonJ

LantiguaR

2006 Expanded genomewide scan implicates a novel locus at 3q28 among Caribbean hispanics with familial Alzheimer disease. Arch Neurol 63 1591 1598

46. BodmerW

BonillaC

2008 Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40 695 701

47. HaroutunianV

PerlDP

PurohitDP

MarinD

KhanK

1998 Regional distribution of neuritic plaques in the nondemented elderly and subjects with very mild Alzheimer disease. Arch Neurol 55 1185 1191

48. EdwardsTL

ScottWK

AlmonteC

BurtA

PowellEH

2010 Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74 97 109

49. McKhannG

DrachmanD

FolsteinM

KatzmanR

PriceD

1984 Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34 939 944

50. RomanGC

TatemichiTK

ErkinjunttiT

CummingsJL

MasdeuJC

1993 Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43 250 260

51. SliferMA

MartinER

BronsonPG

Browning-LargeC

DoraiswamyPM

2006 Lack of association between UBQLN1 and Alzheimer disease. Am J Med Genet B Neuropsychiatr Genet 141B 208 213

52. AbecasisGR

ChernySS

CooksonWO

CardonLR

2001 GRR: graphical representation of relationship errors. Bioinformatics 17 742 743

53. PritchardJK

StephensM

DonnellyP

2000 Inference of population structure using multilocus genotype data. Genetics 155 945 959

54. PritchardJK

StephensM

RosenbergNA

DonnellyP

2000 Association mapping in structured populations. Am J Hum Genet 67 170 181

55. PriceAL

PattersonNJ

PlengeRM

WeinblattME

ShadickNA

2006 Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38 904 909

56. PurcellS

NealeB

Todd-BrownK

ThomasL

FerreiraMA

2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81 559 575

57. MarchiniJ

HowieB

MyersS

McVeanG

DonnellyP

2007 A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39 906 913

58. ZieglerA

2009 Genome-wide association studies: quality control and population-based measures. Genet Epidemiol 33 S45 S50

59. IntraGenDB population genetics database

60. FrankRA

GalaskoD

HampelH

HardyJ

de LeonMJ

2003 Biological markers for therapeutic trials in Alzheimer's disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer's disease. Neurobiol Aging 24 521 536

61. BachmanDL

WolfPA

LinnR

KnoefelJE

CobbJ

1992 Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham Study. Neurology 42 115 119

62. RivaA

KohaneIS

2002 SNPper: retrieval and analysis of human SNPs. Bioinformatics 18 1681 1685

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#