The Genome of a Pathogenic : Cooptive Virulence Underpinned by Key Gene Acquisitions
We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi.
Vyšlo v časopise:
The Genome of a Pathogenic : Cooptive Virulence Underpinned by Key Gene Acquisitions. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001145
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001145
Souhrn
We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi.
Zdroje
1. GurtlerV
MayallBC
SeviourR
2004 Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 28 377 403
2. LarkinMJ
KulakovLA
AllenCC
2005 Biodegradation and Rhodococcus–masters of catabolic versatility. Curr Opin Biotechnol 16 282 290
3. MuscatelloG
LeadonDP
KlaytM
Ocampo-SosaA
LewisDA
2007 Rhodococcus equi infection in foals: the science of ‘rattles’. Equine Vet J 39 470 478
4. Vazquez-BolandJA
LetekM
ValeroA
GonzalezP
ScorttiM
FogartyU
2010 Rhodococcus equi and its pathogenic mechanisms
AlvarezHM
Biology of Rhodococcus, Microbiology Mongraphs 16 Berlin Heidelberg Spinger-Verlag(in press)
5. HondalusMK
MosserDM
1994 Survival and replication of Rhodococcus equi in macrophages. Infect Immun 62 4167 4175
6. WadaR
KamadaM
AnzaiT
NakanishiA
KanemaruT
1997 Pathogenicity and virulence of Rhodococcus equi in foals following intratracheal challenge. Vet Microbiol 56 301 312
7. von BargenK
HaasA
2009 Molecular and infection biology of the horse pathogen Rhodococcus equi. FEMS Microbiol Rev 33 870 891
8. LetekM
Ocampo-SosaAA
SandersM
FogartyU
BuckleyT
2008 Evolution of the Rhodococcus equi vap pathogenicity island seen through comparison of host-associated vapA and vapB virulence plasmids. J Bacteriol 190 5797 5805
9. Ocampo-SosaAA
LewisDA
NavasJ
QuigleyF
CallejoR
2007 Molecular epidemiology of Rhodococcus equi based on traA, vapA, and vapB virulence plasmid markers. J Infect Dis 196 763 769
10. McLeodMP
WarrenRL
HsiaoWW
ArakiN
MyhreM
2006 The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103 15582 15587
11. GoodfellowM
AldersonG
ChunJ
1998 Rhodococcal systematics: problems and developments. Antonie Van Leeuwenhoek 74 3 20
12. BentleySD
ChaterKF
Cerdeno-TarragaAM
ChallisGL
ThomsonNR
2002 Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417 141 147
13. ColeST
BroschR
ParkhillJ
GarnierT
ChurcherC
1998 Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393 537 544
14. QuinnPJ
CarterME
MarkeyB
CarterGR
1994 Corynebacterium species and Rhodococcus equi. Clinical Veterinary Microbiology London Mosby International 137 143
15. BochnerBR
2009 Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33 191 205
16. ZaitsevGM
UotilaJS
TsitkoIV
LobanokAG
Salkinoja-SalonenMS
1995 Utilization of halogenated benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl Environ Microbiol 61 4191 4201
17. SetoM
KimbaraK
ShimuraM
HattaT
FukudaM
1995 A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61 3353 3358
18. van der GeizeR
HesselsGI
DijkhuizenL
2002 Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Delta(1)-dehydrogenase isoenzyme. Microbiology 148 3285 3292
19. KellyBG
WallDM
BolandCA
MeijerWG
2002 Isocitrate lyase of the facultative intracellular pathogen Rhodococcus equi. Microbiology 148 793 798
20. Muñoz-EliasEJ
McKinneyJD
2006 Carbon metabolism of intracellular bacteria. Cell Microbiol 8 10 22
21. WallDM
DuffyPS
DupontC
PrescottJF
MeijerWG
2005 Isocitrate lyase activity is required for virulence of the intracellular pathogen Rhodococcus equi. Infect Immun 73 6736 6741
22. McKinneyJD
Honer zu BentrupK
Munoz-EliasEJ
MiczakA
ChenB
2000 Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406 735 738
23. Hingley-WilsonSM
SambandamurthyVK
JacobsWRJr
2003 Survival perspectives from the world's most successful pathogen, Mycobacterium tuberculosis. Nat Immunol 4 949 955
24. WayneLG
SohaskeyCD
2001 Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55 139 163
25. PeiY
ParreiraV
NicholsonVM
PrescottJF
2007 Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103. Can J Vet Res 71 1 7
26. MalmS
TiffertY
MicklinghoffJ
SchultzeS
JoostI
2009 The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 155 1332 1339
27. SchellMA
KarmirantzouM
SnelB
VilanovaD
BergerB
2002 The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99 14422 14427
28. EschbachM
SchreiberK
TrunkK
BuerJ
JahnD
2004 Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J Bacteriol 186 4596 4604
29. ChaiY
KolterR
LosickR
2009 A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. J Bacteriol 191 2423 2430
30. van VlietAH
StoofJ
PoppelaarsSW
BereswillS
HomuthG
2003 Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori fur repressor. J Biol Chem 278 9052 9057
31. DuzM
WhittakerAG
LoveS
ParkinTD
HughesKJ
2009 Exhaled breath condensate hydrogen peroxide and pH for the assessment of lower airway inflammation in the horse. Res Vet Sci 87 307 312
32. MiyahiM
UedaK
KobayashiY
HataH
KondoS
2008 Fiber digestion in various segments of the hindgut of horses fed grass hay or silage. Anim Sci J 79 339 346
33. MongodinEF
ShapirN
DaughertySC
DeBoyRT
EmersonJB
2006 Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2 e214 doi:10.1371/journal.pgen.0020214
34. PotrykusK
CashelM
2008 (p)ppGpp: still magical? Annu Rev Microbiol 62 35 51
35. NewtonGL
BuchmeierN
FaheyRC
2008 Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 72 471 494
36. SasindranSJ
SaikolappanS
DhandayuthapaniS
2007 Methionine sulfoxide reductases and virulence of bacterial pathogens. Future Microbiol 2 619 630
37. ColangeliR
HaqA
ArcusVL
SummersE
MagliozzoRS
2009 The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci U S A 106 4414 4418
38. HaikarainenT
PapageorgiouAC
2009 Dps-like proteins: structural and functional insights into a versatile protein family. Cell Mol Life Sci
39. PragaiZ
HarwoodCR
2002 Regulatory interactions between the Pho and sigma(B)-dependent general stress regulons of Bacillus subtilis. Microbiology 148 1593 1602
40. MartinezJL
2009 The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci 276 2521 2530
41. UnderwoodAP
MulderA
GharbiaS
GreenJ
2005 Virulence Searcher: a tool for searching raw genome sequences from bacterial genomes for putative virulence factors. Clin Microbiol Infect 11 770 772
42. CasaliN
RileyLW
2007 A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics 8 60
43. van der GeizeR
de JongW
HesselsGI
GrommenAW
JacobsAA
2008 A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic Acids Res 36 e151
44. MohnWW
van der GeizeR
StewartGR
OkamotoS
LiuJ
2008 The actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem 283 35368 35374
45. JoshiSM
PandeyAK
CapiteN
FortuneSM
RubinEJ
2006 Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A 103 11760 11765
46. Gey van PittiusNC
SampsonSL
LeeH
KimY
van HeldenPD
2006 Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6 95
47. StrongM
SawayaMR
WangS
PhillipsM
CascioD
2006 Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103 8060 8065
48. SimeoneR
BottaiD
BroschR
2009 ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol 12 4 10
49. JainM
CoxJS
2005 Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PLoS Pathog 1 e2 doi:10.1371/journal.ppat.0010002
50. PuechV
GuilhotC
PerezE
TropisM
ArmitigeLY
2002 Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis. Mol Microbiol 44 1109 1122
51. TomichM
PlanetPJ
FigurskiDH
2007 The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5 363 375
52. MandlikA
SwierczynskiA
DasA
Ton-ThatH
2008 Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16 33 40
53. AlteriCJ
Xicohtencatl-CortesJ
HessS
Caballero-OlinG
GironJA
2007 Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci U S A 104 5145 5150
54. PrescottJF
1991 Rhodococcus equi: an animal and human pathogen. Clin Microbiol Rev 4 20 34
55. MarraffiniLA
DedentAC
SchneewindO
2006 Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev 70 192 221
56. NavasJ
Gonzalez-ZornB
LadronN
GarridoP
Vazquez-BolandJA
2001 Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. J Bacteriol 183 4796 4805
57. ParkerSK
CurtinKM
VasilML
2007 Purification and characterization of mycobacterial phospholipase A: an activity associated with mycobacterial cutinase. J Bacteriol 189 4153 4160
58. Said-SalimB
MostowyS
KristofAS
BehrMA
2006 Mutations in Mycobacterium tuberculosis Rv0444c, the gene encoding anti-SigK, explain high level expression of MPB70 and MPB83 in Mycobacterium bovis. Mol Microbiol 62 1251 1263
59. ParkSY
JungMY
KimIS
2009 Stabilin-2 mediates homophilic cell-cell interactions via its FAS1 domains. FEBS Lett 583 1375 1380
60. PetheK
BifaniP
DrobecqH
SergheraertC
DebrieAS
2002 Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis. Proc Natl Acad Sci U S A 99 10759 10764
61. Miranda-CasoLuengoR
PrescottJF
Vazquez-BolandJA
MeijerWG
2008 The intracellular pathogen Rhodococcus equi produces a catecholate siderophore required for saprophytic growth. J Bacteriol 190 1631 1637
62. RatledgeC
2004 Iron, mycobacteria and tuberculosis. Tuberculosis (Edinb) 84 110 130
63. Gey Van PittiusNC
GamieldienJ
HideW
BrownGD
SiezenRJ
2001 The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol 2 RESEARCH0044
64. IshikawaJ
YamashitaA
MikamiY
HoshinoY
KuritaH
2004 The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci U S A 101 14925 14930
65. TrueJR
CarrollSB
2002 Gene co-option in physiological and morphological evolution. Annu Rev Cell Dev Biol 18 53 80
66. McLennanDA
2008 The concept of co-option: why evolution often looks miraculous. Evo Devo Outreach 1 247 258
67. GanforninaMD
SanchezD
1999 Generation of evolutionary novelty by functional shift. Bioessays 21 432 439
68. KonstantinidisKT
TiedjeJM
2004 Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A 101 3160 3165
69. LynchM
KatjuV
2004 The altered evolutionary trajectories of gene duplicates. Trends Genet 20 544 549
70. ParkHD
GuinnKM
HarrellMI
LiaoR
VoskuilMI
2003 Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48 833 843
71. Chico-CaleroI
SuarezM
Gonzalez-ZornB
ScorttiM
SlaghuisJ
2002 Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci U S A 99 431 436
72. ByrneGA
RussellDA
ChenX
MeijerWG
2007 Transcriptional regulation of the virR operon of the intracellular pathogen Rhodococcus equi. J Bacteriol 189 5082 5089
73. ByrneBA
PrescottJF
PalmerGH
TakaiS
NicholsonVM
2001 Virulence plasmid of Rhodococcus equi contains inducible gene family encoding secreted proteins. Infect Immun 69 650 656
74. FreemanTC
GoldovskyL
BroschM
van DongenS
MaziereP
2007 Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput Biol 3 e206 doi:10.1371/journal.pcbi.0030206
75. TheocharidisA
van DongenS
EnrightAJ
FreemanTC
2009 Network visualization and analysis of gene expression data using BioLayout Express3D. Nat Protoc 4 1535 1550
76. BarabasiAL
OltvaiZN
2004 Network biology: understanding the cell's functional organization. Nat Rev Genet 5 101 113
77. RenJ
PrescottJF
2004 The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence. Vet Microbiol 103 219 230
78. RussellDA
ByrneGA
O'ConnellEP
BolandCA
MeijerWG
2004 The LysR-type transcriptional regulator VirR is required for expression of the virulence gene vapA of Rhodococcus equi ATCC 33701. J Bacteriol 186 5576 5584
79. DosselaereF
VanderleydenJ
2001 A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit Rev Microbiol 27 75 131
80. FieldsPI
SwansonRV
HaidarisCG
HeffronF
1986 Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A 83 5189 5193
81. FoulongneV
WalravensK
BourgG
BoschiroliML
GodfroidJ
2001 Aromatic compound-dependent Brucella suis is attenuated in both cultured cells and mouse models. Infect Immun 69 547 550
82. BentleySD
CortonC
BrownSE
BarronA
ClarkL
2008 Genome of the actinomycete plant pathogen Clavibacter michiganensis subsp. sepedonicus suggests recent niche adaptation. J Bacteriol 190 2150 2160
83. SohaskeyCD
2008 Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol 190 2981 2986
84. VoskuilMI
SchnappingerD
ViscontiKC
HarrellMI
DolganovGM
2003 Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198 705 713
85. WassenaarTM
GaastraW
2001 Bacterial virulence: can we draw the line? FEMS Microbiol Lett 201 1 7
86. BabaH
NadaT
OhkusuK
EzakiT
HasegawaY
2009 First case of bloodstream infection caused by Rhodococcus erythropolis. J Clin Microbiol 47 2667 2669
87. FelsensteinJ
1989 PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5 164 166
88. HongY
HondalusMK
2008 Site-specific integration of Streptomyces PhiC31 integrase-based vectors in the chromosome of Rhodococcus equi. FEMS Microbiol Lett 287 63 68
89. Gonzalez-ZornB
Dominguez-BernalG
SuarezM
RipioMT
VegaY
1999 The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol Microbiol 33 510 523
90. MayJJ
WendrichTM
MarahielMA
2001 The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276 7209 7217
91. MiethkeM
MarahielMA
2007 Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71 413 451
92. VernikosGS
ParkhillJ
2006 Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22 2196 2203
93. KeselerIM
Bonavides-MartinezC
Collado-VidesJ
Gama-CastroS
GunsalusRP
2009 EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37 D464 470
94. Martinez-GomezNC
DownsDM
2008 ThiC is an [Fe-S] cluster protein that requires AdoMet to generate the 4-amino-5-hydroxymethyl-2-methylpyrimidine moiety in thiamin synthesis. Biochemistry 47 9054 9056
95. GhoshA
PaulD
PrakashD
MayilrajS
JainRK
2006 Rhodococcus imtechensis sp. nov., a nitrophenol-degrading actinomycete. Int J Syst Evol Microbiol 56 1965 1969
96. YoonJH
ChoYG
KangSS
KimSB
LeeST
2000 Rhodococcus koreensis sp. nov., a 2,4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 50 Pt 3 1193 1201
97. MayilrajS
KrishnamurthiS
SahaP
SainiHS
2006 Rhodococcus kroppenstedtii sp. nov., a novel actinobacterium isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 56 979 982
98. WangYX
WangHB
ZhangYQ
XuLH
JiangCL
2008 Rhodococcus kunmingensis sp. nov., an actinobacterium isolated from a rhizosphere soil. Int J Syst Evol Microbiol 58 1467 1471
99. LiB
FurihataK
DingLX
YokotaA
2007 Rhodococcus kyotonensis sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 57 1956 1959
100. BrigliaM
RaineyFA
StackebrandtE
SchraaG
Salkinoja-SalonenMS
1996 Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6-trichlorophenol. Int J Syst Bacteriol 46 23 30
101. YoonJH
KangSS
ChoYG
LeeST
KhoYH
2000 Rhodococcus pyridinivorans sp. nov., a pyridine-degrading bacterium. Int J Syst Evol Microbiol 50 Pt 6 2173 2180
102. MatsuyamaH
YumotoI
KudoT
ShidaO
2003 Rhodococcus tukisamuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 53 1333 1337
103. ZhangYQ
LiWJ
KroppenstedtRM
KimCJ
ChenGZ
2005 Rhodococcus yunnanensis sp. nov., a mesophilic actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 55 1133 1137
104. BottaiD
BroschR
2009 Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families. Mol Microbiol 73 325 328
105. MaressoAW
SchneewindO
2008 Sortase as a target of anti-infective therapy. Pharmacol Rev 60 128 141
106. SekineM
TanikawaS
OmataS
SaitoM
FujisawaT
2006 Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8 334 346
107. FlorczykMA
McCueLA
PurkayasthaA
CurrentiE
WolinMJ
2003 A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression. Infect Immun 71 5332 5343
108. ChauhanS
TyagiJS
2008 Interaction of DevR with multiple binding sites synergistically activates divergent transcription of narK2-Rv1738 genes in Mycobacterium tuberculosis. J Bacteriol 190 5394 5403
109. PriceMN
DehalPS
ArkinAP
2007 Orthologous transcription factors in bacteria have different functions and regulate different genes. PLoS Comput Biol 3 e175 doi:10.1371/journal.pcbi.0030175
110. DrummJE
MiK
BilderP
SunM
LimJ
2009 Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-Binding: requirement for establishing chronic persistent infection. PLoS Pathog 5 e1000460 doi:10.1371/journal.ppat.1000460
111. NordmannP
RoncoE
1992 In-vitro antimicrobial susceptibility of Rhodococcus equi. J Antimicrob Chemother 29 383 393
112. McNeilMM
BrownJM
1992 Distribution and antimicrobial susceptibility of Rhodococcus equi from clinical specimens. Eur J Epidemiol 8 437 443
113. MascellinoMT
IonaE
PonzoR
MastroianniCM
DeliaS
1994 Infections due to Rhodococcus equi in three HIV-infected patients: microbiological findings and antibiotic susceptibility. Int J Clin Pharmacol Res 14 157 163
114. SorianoF
ZapardielJ
NietoE
1995 Antimicrobial susceptibilities of Corynebacterium species and other non-spore-forming gram-positive bacilli to 18 antimicrobial agents. Antimicrob Agents Chemother 39 208 214
115. MakraiL
FodorL
CsivincsikA
VargaJ
SenonerZ
2000 Characterisation of Rhodococcus equi strains isolated from foals and from immunocompromised human patients. Acta Vet Hung 48 253 259
116. JacksSS
GiguereS
NguyenA
2003 In vitro susceptibilities of Rhodococcus equi and other common equine pathogens to azithromycin, clarithromycin, and 20 other antimicrobials. Antimicrob Agents Chemother 47 1742 1745
117. RutherfordK
ParkhillJ
CrookJ
HorsnellT
RiceP
2000 Artemis: sequence visualization and annotation. Bioinformatics 16 944 945
118. CarverTJ
RutherfordKM
BerrimanM
RajandreamMA
BarrellBG
2005 ACT: the Artemis Comparison Tool. Bioinformatics 21 3422 3423
119. McGinnisS
MaddenTL
2004 BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32 W20 25
120. DelcherAL
HarmonD
KasifS
WhiteO
SalzbergSL
1999 Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27 4636 4641
121. KarpPD
PaleyS
RomeroP
2002 The Pathway Tools software. Bioinformatics 18 Suppl 1 S225 232
122. BatemanA
BirneyE
CerrutiL
DurbinR
EtwillerL
2002 The Pfam protein families database. Nucleic Acids Res 30 276 280
123. HuloN
BairochA
BulliardV
CeruttiL
CucheBA
2008 The 20 years of PROSITE. Nucleic Acids Res 36 D245 249
124. KurtzS
ChoudhuriJV
OhlebuschE
SchleiermacherC
StoyeJ
2001 REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29 4633 4642
125. Griffiths-JonesS
BatemanA
MarshallM
KhannaA
EddySR
2003 Rfam: an RNA family database. Nucleic Acids Res 31 439 441
126. BendtsenJD
NielsenH
von HeijneG
BrunakS
2004 Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340 783 795
127. KroghA
LarssonB
von HeijneG
SonnhammerEL
2001 Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305 567 580
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Synthesizing and Salvaging NAD: Lessons Learned from
- Optimal Strategy for Competence Differentiation in Bacteria
- Long- and Short-Term Selective Forces on Malaria Parasite Genomes
- Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data