#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study


The relative contribution of genetic risk factors to the progression of subclinical atherosclerosis is poorly understood. It is likely that multiple variants are implicated in the development of atherosclerosis, but the subtle genotypic and phenotypic differences are beyond the reach of the conventional case-control designs and the statistical significance testing procedures being used in most association studies. Our objective here was to investigate whether an alternative approach—in which common disorders are treated as quantitative phenotypes that are continuously distributed over a population—can reveal predictive insights into the early atherosclerosis, as assessed using ultrasound imaging-based quantitative measurement of carotid artery intima-media thickness (IMT). Using our population-based follow-up study of atherosclerosis precursors as a basis for sampling subjects with gradually increasing IMT levels, we searched for such subsets of genetic variants and their interactions that are the most predictive of the various risk classes, rather than using exclusively those variants meeting a stringent level of statistical significance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the predictive value of the variants, and cross-validation was used to assess how well the predictive models will generalize to other subsets of subjects. By means of our predictive modeling framework with machine learning-based SNP selection, we could improve the prediction of the extreme classes of atherosclerosis risk and progression over a 6-year period (average AUC 0.844 and 0.761), compared to that of using conventional cardiovascular risk factors alone (average AUC 0.741 and 0.629), or when combined with the statistically significant variants (average AUC 0.762 and 0.651). The predictive accuracy remained relatively high in an independent validation set of subjects (average decrease of 0.043). These results demonstrate that the modeling framework can utilize the “gray zone” of genetic variation in the classification of subjects with different degrees of risk of developing atherosclerosis.


Vyšlo v časopise: Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001146
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001146

Souhrn

The relative contribution of genetic risk factors to the progression of subclinical atherosclerosis is poorly understood. It is likely that multiple variants are implicated in the development of atherosclerosis, but the subtle genotypic and phenotypic differences are beyond the reach of the conventional case-control designs and the statistical significance testing procedures being used in most association studies. Our objective here was to investigate whether an alternative approach—in which common disorders are treated as quantitative phenotypes that are continuously distributed over a population—can reveal predictive insights into the early atherosclerosis, as assessed using ultrasound imaging-based quantitative measurement of carotid artery intima-media thickness (IMT). Using our population-based follow-up study of atherosclerosis precursors as a basis for sampling subjects with gradually increasing IMT levels, we searched for such subsets of genetic variants and their interactions that are the most predictive of the various risk classes, rather than using exclusively those variants meeting a stringent level of statistical significance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the predictive value of the variants, and cross-validation was used to assess how well the predictive models will generalize to other subsets of subjects. By means of our predictive modeling framework with machine learning-based SNP selection, we could improve the prediction of the extreme classes of atherosclerosis risk and progression over a 6-year period (average AUC 0.844 and 0.761), compared to that of using conventional cardiovascular risk factors alone (average AUC 0.741 and 0.629), or when combined with the statistically significant variants (average AUC 0.762 and 0.651). The predictive accuracy remained relatively high in an independent validation set of subjects (average decrease of 0.043). These results demonstrate that the modeling framework can utilize the “gray zone” of genetic variation in the classification of subjects with different degrees of risk of developing atherosclerosis.


Zdroje

1. PlominR

HaworthCM

DavisOS

2009 Common disorders are quantitative traits. Opinion. Nat Rev Genet 10 872 878

2. SchorkNJ

NathSK

FallinD

ChakravartiA

2000 Linkage disequilibrium analysis of biallelic DNA markers, human quantitative trait loci, and threshold-defined case and control subjects. Am J Hum Genet 67 1208 1218

3. LanktreeMB

HegeleRA

SchorkNJ

SpenceJD

2010 Extremes of unexplained variation as a phenotype: an efficient approach for genome-wide association studies of cardiovascular disease. Circ Cardiovasc Genet 3 215 221

4. ZhangG

NebertDW

ChakrabortyR

JinL

2006 Statistical power of association using the extreme discordant phenotype design. Pharmacogenet Genomics 16 401 143

5. EguchiT

MaruyamaT

OhnoY

MoriiT

HiraoK

2009 Possible association of tumor necrosis factor receptor 2 gene polymorphism with severe hypertension using the extreme discordant phenotype design. Hypertens Res 32 775 779

6. TorkamaniA

SchorkNJ

2009 Pathway and network analysis with high-density allelic association data. Methods Mol Biol 563 289 301

7. PearsonTA

2002 New tools for coronary risk assessment: what are their advantages and limitations? Circulation 105 886 892

8. KoskinenJ

KähönenM

ViikariJS

TaittonenL

LaitinenT

2009 Conventional cardiovascular risk factors and metabolic syndrome in predicting carotid intima-media thickness progression in young adults: the cardiovascular risk in young Finns study. Circulation 120 229 236

9. SamaniNJ

ErdmannJ

HallAS

HengstenbergC

ManginoM

2007 Genome-wide association analysis of coronary artery disease. N Engl J Med 357 443 453

10. McPhersonR

PertsemlidisA

KavaslarN

StewartA

RobertsR

2007 A common allele on chromosome 9 associated with coronary heart disease. Science 316 1488 1491

11. HelgadottirA

ThorleifssonG

ManolescuA

GretarsdottirS

BlondalT

2007 A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316 1491 1493

12. LarsonMG

AtwoodLD

BenjaminEJ

CupplesLA

D'AgostinoRBSr

2007 Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes. BMC Med Genet 8 S5

13. The Wellcome Trust Case Control Consortium 2007 Genome-wide association study of 14 000 cases of seven common diseases and 3 000 shared control. Nature 447 661 678

14. LukeMM

KaneJP

LiuDM

RowlandCM

ShiffmanD

2007 A polymorphism in the protease-like domain of apolipoprotein(a) is associated with severe coronary artery disease. Arterioscler Thromb Vasc Biol 27 2030 2036

15. WillerCJ

SannaS

JacksonAU

ScuteriA

BonnycastleLL

2008 Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40 161 169

16. KathiresanS

MelanderO

AnevskiD

GuiducciC

BurttNP

2008 Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med 358 1240 1249

17. ShiffmanD

KaneJP

LouieJZ

ArellanoAR

RossDA

2008 Analysis of 17,576 potentially functional SNPs in three case-control studies of myocardial infarction. PloS ONE 3 e2895 doi:10.1371/journal.pone.0002895

18. AbdullahKG

LiL

ShenGQ

HuY

YangY

2008 Four SNPs on chromosome 9p21 confer risk to premature, familial CAD and MI in an American Caucasian population (GeneQuest). Annals Human Genet 72 654 657

19. SagooGS

TattI

SalantiG

ButterworthAS

SarwarN

2008 Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis. Am J Epidemiol 168 1233 1246

20. AndersonJL

HorneBD

KolekMJ

MuhlesteinJB

MowerCP

2008 Genetic variation at the 9p21 locus predicts angiographic coronary artery disease prevalence but not extent and has clinical utility. Am Heart J 156 1155 1162

21. PaynterNP

ChasmanDI

BuringJE

ShiffmanD

CookNR

2009 Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann Intern Med 150 65 72

22. LusisAJ

PajukantaP

2008 A treasure trove for lipoprotein biology. Comment. Nat Genet 40 129 130

23. RaitakariOT

JuonalaM

KähönenM

TaittonenL

LaitinenT

2003 Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: The Cardiovascular Risk in Young Finns Study. JAMA 2003 290 2277 2283

24. LiS

ChenW

SrinivasanSR

BondMG

TangR

2003 Childhood cardiovascular risk factors and carotid vascular changes in adulthood: The Bogalusa Heart Study. JAMA 290 2271 2276

25. SalonenJT

SalonenR

1991 Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arteroscler Thromb 11 1245 1249

26. O'LearyDH

PolakJF

KronmalRA

ManolioTA

BurkeGL

1999 Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 340 14 22

27. LorenzMW

MarkusHS

BotsML

RosvallM

SitzerM

2007 Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 115 459 467

28. O'LearyDH

PolakJF

2002 Intima-media thickness: a tool for atherosclerosis imaging and event prediction. Am J Cardiol 90 18L 21L

29. FrazerKA

MurraySS

SchorkNJ

TopolEJ

2009 Human genetic variation and its contribution to complex traits. Nat Rev Genet 10 241 251

30. MooreJH

WilliamsSM

2009 Epistasis and its implications for personal genetics. Am J Hum Genet 85 309 320

31. MooreJH

AsselbergsFW

WilliamsSM

2010 Bioinformatics challenges for genome-wide association studies. Bioinformatics 26 445 455

32. KraftP

WacholderS

CornelisMC

HuFB

HayesRB

2009 Beyond odds ratios: communicating disease risk based on genetic profiles. Perspective. Nat Rev Genet 10 264 9

33. JakobsdottirJ

GorinMB

ConleyYP

FerrellRE

WeeksDE

2009 Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers. PLoS Genet 5 e1000337 doi:10.1371/journal.pgen.1000337

34. SamaniNJ

RaitakariOT

SipiläK

TobinMD

SchunkertH

2008 Coronary artery disease-associated locus on chromosome 9p21 and early markers of atherosclerosis. Arterioscler Thromb Vasc Biol 28 1679 1683

35. FanYM

RaitakariOT

KähönenM

Hutri-KähönenN

JuonalaM

2009 Hepatic lipase promoter C-480T polymorphism is associated with serum lipids levels, but not subclinical atherosclerosis: The Cardiovascular Risk in Young Finns Study. Clin Genet 76 46 53

36. HumphriesSE

CooperJA

TalmudPJ

MillerGJ

2007 Candidate gene genotypes, along with conventional risk factor assessment, improve estimation of coronary heart disease risk in healthy UK men. Clin Chem 53 8 16

37. MorrisonAC

BareLA

ChamblessLE

EllisSG

MalloyM

2007 Prediction of coronary heart disease risk using a genetic risk score: the Atherosclerosis Risk in Communities Study. Am J Epidemiol 166 28 35

38. van der NetJB

JanssensAC

DefescheJC

KasteleinJJ

SijbrandsEJ

2009 Usefulness of genetic polymorphisms and conventional risk factors to predict coronary heart disease in patients with familial hypercholesterolemia. Am J Cardiol 103 375 380

39. van der NetJB

JanssensAC

SijbrandsEJ

SteyerbergEW

2009 Value of genetic profiling for the prediction of coronary heart disease. Am Heart J 158 105 110

40. IoannidisJP

2009 Prediction of cardiovascular disease outcomes and established cardiovascular risk factors by genome-wide association markers. Circ Cardiovasc Genet 2 7 15

41. PaynterNP

ChasmanDI

ParéG

BuringJE

CookNR

2010 Association between a literature-based genetic risk score and cardiovascular events in women. JAMA 303 631 637

42. CordellHJ

2009 Genome-wide association studies: Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10 392 404

43. DonnellyP

2008 Progress and challenges in genome-wide association studies in humans. Commentary. Nature 456 728 731

44. MaherB

2008 Personal genomes: The case of the missing heritability. News Feature. Nature 456 18 21

45. SimonR

RadmacherMD

DobbinK

McShaneLM

2003 Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95 14 18

46. RontuR

KarhunenPJ

IlveskoskiE

MikkelssonJ

KajanderO

2003 Smoking-dependent association between paraoxonase 1 M/L55 genotype and coronary atherosclerosis in males: an autopsy study. Atherosclerosis 171 31 37

47. McGeachieM

RamoniRL

MychaleckyjJC

FurieKL

DreyfussJM

2009 Integrative predictive model of coronary artery calcification in atherosclerosis. Circulation 120 2448 2454

48. BostromK

WatsonKE

HornS

WorthamC

HermanIM

1993 Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91 1800 1809

49. BucayN

SarosiI

DunstanCR

MoronyS

TarpleyJ

1998 Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12 1260 1268

50. Collin-OsdobyP

2004 Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Review. Circ Res 95 1046 1057

51. StephensM

BaldingDJ

2009 Bayesian statistical methods for genetic association studies. Nat Rev Genet 10 681 690

52. JanssensAC

van DuijnCM

2009 Genome-based prediction of common diseases: methodological considerations for future research. Genome Med 1 20

53. AmbroiseC

McLachlanGJ

2002 Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA 99 6562 6566

54. PepeMS

JanesH

LongtonG

LeisenringW

NewcombP

2004 Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol 159 882 890

55. IoannidisJP

ThomasG

DalyMJ

2009 Validating, augmenting and refining genome-wide association signals. Nat Rev Genet 10 318 329

56. ReunanenJ

2003 Overfitting in making comparisons between variable selection methods. J Machine Learn Res 3 1371 1382

57. AnderssenE

DyrstadK

WestadF

MartensH

2006 Reducing over-optimism in variable selection by cross-model validation. Chemometrics Intell Laborat Systems 84 69 74

58. DomingosP

PazzanM

1997 On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29 103 130

59. HandDJ

YuK

2001 Idiot's Bayes – not so stupid after all? International Statistical Rev 69 385 398

60. ZhangH

2005 Exploring conditions for the optimality of naïve Bayes. International J Patt Recogn Artif Intelligence 19 183 198

61. AittokallioJ

PoloO

HiissaJ

VirkkiA

ToikkaJ

2008 Overnight variability in transcutaneous carbon dioxide predicts vascular impairment in women. Exp Physiol 93 880 891

62. LongN

GianolaD

RosaGJ

WeigelKA

AvendañoS

2009 Comparison of classification methods for detecting associations between SNPs and chick mortality. Genet Sel Evol 41 18

63. HoggartCJ

WhittakerJC

De IorioM

BaldingDJ

2008 Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet 4 e1000130 doi:10.1371/journal.pgen.1000130

64. SilanderK

AlanneM

KristianssonK

SaarelaO

RipattiS

2008 Gender differences in genetic risk profiles for cardiovascular disease. PLoS ONE 3 e3615 doi:10.1371/journal.pone.0003615

65. HiissaJ

EloLL

HuhtinenK

PerheentupaA

PoutanenM

2009 Resampling reveals sample-level differential expression in clinical genome-wide studies. OMICS 13 381 396

66. RaitakariOT

JuonalaM

RönnemaaT

Keltikangas-JärvinenL

RäsänenL

2008 Cohort profile: the Cardiovascular Risk in Young Finns Study. Int J Epidemiol 37 1220 6

67. ÅkerblomHK

ViikariJ

UhariM

RäsänenL

BycklingT

1985 Atherosclerosis precursors in Finnish children and adolescents. I. General description of the cross-sectional study of 1980, and an account of the children's and families' state of health. Acta Paediatr Scand Suppl 318 49 63

68. RaikoJR

ViikariJS

IlmanenA

Hutri-KähönenN

TaittonenL

2010 Follow-ups of the Cardiovascular Risk in Young Finns Study in 2001 and 2007: Levels and 6-year changes in risk factors. J Intern Med 267 370 384

69. LivakKJ

1999 Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 14 143 149

70. EvansA

SalomaaV

KulathinalS

AsplundK

CambienF

2005 MORGAM (an international pooling of cardiovascular cohorts). Review. Int J Epidemiol 34 21 27

71. WittenIH

FrankE

2005 Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. San Francisco Morgan Kaufmann Publishers

72. JohnG

LangleyP

1995 Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh Conference of Uncertainty in Artificial Intelligence San Mateo Morgan Kaufmann Publishers 338 345

73. LongN

GianolaD

RosaGJ

WeigelKA

AvendañoS

2007 Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet 124 377 389

74. PhillipsPC

2008 Epistasis: the essential role of gene interactions in the structure and evolution of genetic systems. Review. Nat Rev Genet 9 855 867

75. BaldingDJ

2006 A tutorial on statistical methods for population association studies. Nat Rev Genet 7 781 791

76. WojcikJ

FornerK

2008 ExactFDR: exact computation of false discovery rate estimate in case-control association studies. Bioinformatics 24 2407 2408

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#