#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evidence of Selection upon Genomic GC-Content in Bacteria


The genomic GC-content of bacteria varies dramatically, from less than 20% to more than 70%. This variation is generally ascribed to differences in the pattern of mutation between bacteria. Here we test this hypothesis by examining patterns of synonymous polymorphism using datasets from 149 bacterial species. We find a large excess of synonymous GC→AT mutations over AT→GC mutations segregating in all but the most AT-rich bacteria, across a broad range of phylogenetically diverse species. We show that the excess of GC→AT mutations is inconsistent with mutation bias, since it would imply that most GC-rich bacteria are declining in GC-content; such a pattern would be unsustainable. We also show that the patterns are probably not due to translational selection or biased gene conversion, because optimal codons tend to be AT-rich, and the excess of GC→AT SNPs is observed in datasets with no evidence of recombination. We therefore conclude that there is selection to increase synonymous GC-content in many species. Since synonymous GC-content is highly correlated to genomic GC-content, we further conclude that there is selection on genomic base composition in many bacteria.


Vyšlo v časopise: Evidence of Selection upon Genomic GC-Content in Bacteria. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001107
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001107

Souhrn

The genomic GC-content of bacteria varies dramatically, from less than 20% to more than 70%. This variation is generally ascribed to differences in the pattern of mutation between bacteria. Here we test this hypothesis by examining patterns of synonymous polymorphism using datasets from 149 bacterial species. We find a large excess of synonymous GC→AT mutations over AT→GC mutations segregating in all but the most AT-rich bacteria, across a broad range of phylogenetically diverse species. We show that the excess of GC→AT mutations is inconsistent with mutation bias, since it would imply that most GC-rich bacteria are declining in GC-content; such a pattern would be unsustainable. We also show that the patterns are probably not due to translational selection or biased gene conversion, because optimal codons tend to be AT-rich, and the excess of GC→AT SNPs is observed in datasets with no evidence of recombination. We therefore conclude that there is selection to increase synonymous GC-content in many species. Since synonymous GC-content is highly correlated to genomic GC-content, we further conclude that there is selection on genomic base composition in many bacteria.


Zdroje

1. NakabachiA

YamashitaA

TohH

IshikawaH

DunbarHE

2006 The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314 267

2. BernardiG

BernardiG

1985 Codon usage and genome composition. J Mol Evol 22 363 365

3. GuX

Hewett-EmmettD

LiWH

1998 Directional mutational pressure affects the amino acid composition and hydrophobicity of proteins in bacteria. Genetica 102–103 383 391

4. SharpPM

BailesE

GrocockRJ

PedenJF

SockettRE

2005 Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33 1141 1153

5. Haywood-FarmerE

OttoSP

2003 The evolution of genomic base composition in bacteria. Evolution 57 1783 1792

6. BentleySD

ParkhillJ

2004 Comparative genomic structure of prokaryotes. Annu Rev Genet 38 771 792

7. SueokaN

1961 Compositional correlation between deoxyribonucleic acid and protein. Cold Spring Harb Symp Quant Biol 26 35 43

8. FreeseE

1962 On the evolution of base composition of DNA. J Theor Biol 3 82 101

9. RochaEP

DanchinA

2002 Base composition bias might result from competition for metabolic resources. Trends Genet 18 291 294

10. WoolfitM

BromhamL

2003 Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol 20 1545 1555

11. FoerstnerKU

von MeringC

HooperSD

BorkP

2005 Environments shape the nucleotide composition of genomes. EMBO Rep 6 1208 1213

12. NayaH

RomeroH

ZavalaA

AlvarezB

MustoH

2002 Aerobiosis increases the genomic guanine plus cytosine content (GC%) in prokaryotes. J Mol Evol 55 260 264

13. McEwanCE

GathererD

McEwanNR

1998 Nitrogen-fixing aerobic bacteria have higher genomic GC content than non-fixing species within the same genus. Hereditas 128 173 178

14. MustoH

NayaH

ZavalaA

RomeroH

Alvarez-ValinF

2006 Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochem Biophys Res Commun 347 1 3

15. GaltierN

LobryJ

1997 Relationships between genomic G+C content, RNA secondary structures and optimal growth temperature in prokaryotes. J Mol Evol 44 632 636

16. HurstLD

MerchantAR

2001 High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc Biol Sci 268 493 497

17. WangHC

SuskoE

RogerAJ

2006 On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors. Biochem Biophys Res Commun 342 681 684

18. SargentiniNJ

SmithKC

1994 DNA sequence analysis of gamma-radiation (anoxic)-induced and spontaneous lacId mutations in Escherichia coli K-12. Mutat Res 309 147 163

19. SchaaperRM

DunnRL

1991 Spontaneous mutation in the Escherichia coli lacI gene. Genetics 129 317 326

20. LynchM

2007 The origins of genome architecture Sunderland Sinauer

21. DeschavannmeP

FilipskiJ

1995 Correlation of GC content with replication timing and repair mechanisms in weakly expressed E.coli genes. Nucl Acids Res 23 1350 1353

22. BalbiKJ

RochaEP

FeilEJ

2009 The temporal dynamics of slightly deleterious mutations in Escherichia coli and Shigella spp. Mol Biol Evol 26 345 355

23. MitchellA

GraurD

2005 Inferring the pattern of spontaneous mutation from the pattern of substitution in unitary pseudogenes of Mycobacterium leprae and a comparison of mutation patterns among distantly related organisms. J Mol Evol 61 795 803

24. AkashiH

1995 Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139 1067 1076

25. Eyre-WalkerA

1997 Differentiating selection and mutation bias. Genetics 147 1983 1987

26. HeyJ

2001 The mind of the species problem. Trends Ecol Evol 16 326 329

27. Eyre-WalkerA

1998 Problems with parsimony in sequences of biased base composition. J Mol Evol 47 686 690

28. SharpPM

BurgessCJ

LloydAT

MitchellKJ

1992 Selective use of termination and variation in codon choice.

HatfieldDL

LeeBJ

PirtleRM

Transfer RNA in protein synthesis Boca Raton CRC Press

29. BirdsellJA

2002 Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol 19 1181 1197

30. DuretL

GaltierN

2009 Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10 285 311

31. MaraisG

2003 Biased gene conversion: implications for genome and sex evolution. Trends Genet 19 330 338

32. NagylakiT

1983 Evolution of a finite population under gene conversion. Proc Natl Acad Sci USA 80 6278 6281

33. Eyre-WalkerA

1999 Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics 152 675 683

34. HudsonRR

KaplanNL

1985 Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111 147 164

35. VosM

DidelotX

2009 A comparison of homologous recombination rates in bacteria and archaea. ISME J 3 199 208

36. GogartenJP

TownsendJP

2005 Horizontal gene transfer, genome innovation and evolution. Nature Rev Microbiol 3 679 687

37. DaubinV

LeratE

PerriereG

2003 The source of laterally transferred genes in bacterial genomes. Genome Biol 4 R57

38. McClellandM

SandersonKE

SpiethJ

CliftonSW

LatreilleP

2001 Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413 852 856

39. LawrenceJG

OchmanH

1997 Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44 383 397

40. BernM

GoldbergD

2005 Automatic selection of representative proteins for bacterial phylogeny. BMC Evol Biol 5 34

41. Maynard SmithJM

1992 Analyzing the mosaic structure of genes. J Mol Evol 34 126 129

42. HershbergR

PetrovP

2010 Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet 6 e1001115

43. LynchM

ConeryJS

2003 The origins of genome complexity. Science 302 1401 1404

44. LynchM

2010 Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci USA 107 961 968

45. TouchonM

HoedeC

TenaillonO

BarbeV

BaeriswylS

2009 Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5 e1000344

46. MoranNA

McCutcheonJP

NakabachiA

2008 Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42 165 190

47. MoranNA

McLaughlinHJ

SorekR

2009 The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323 379 382

48. WernegreenJJ

FunkDJ

2004 Mutation exposed: a neutral explanation for extreme base composition of an endosymbiont genome. J Mol Evol 59 849 858

49. McCutcheonJP

McDonaldBR

MoranNA

2009 Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 5 e1000565

50. EdgarRC

2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797

51. DesperR

GascuelO

2002 Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol 9 687 705

52. PiganeauG

GardnerMJ

Eyre-WalkerA

2004 A broad survey of recombination in animal mitochondrial DNA. Mol Biol Evol 21 2319 2325

53. WrightS

1931 Evolution in Mendelian populations. Genetics 16 97 159

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#