#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An Immune Response Network Associated with Blood Lipid Levels


While recent scans for genetic variation associated with human disease have been immensely successful in uncovering large numbers of loci, far fewer studies have focused on the underlying pathways of disease pathogenesis. Many loci which are associated with disease and complex phenotypes map to non-coding, regulatory regions of the genome, indicating that modulation of gene transcription plays a key role. Thus, this study generated genome-wide profiles of both genetic and transcriptional variation from the total blood extracts of over 500 randomly-selected, unrelated individuals. Using measurements of blood lipids, key players in the progression of atherosclerosis, three levels of biological information are integrated in order to investigate the interactions between circulating leukocytes and proximal lipid compounds. Pair-wise correlations between gene expression and lipid concentration indicate a prominent role for basophil granulocytes and mast cells, cell types central to powerful allergic and inflammatory responses. Network analysis of gene co-expression showed that the top associations function as part of a single, previously unknown gene module, the Lipid Leukocyte (LL) module. This module replicated in T cells from an independent cohort while also displaying potential tissue specificity. Further, genetic variation driving LL module expression included the single nucleotide polymorphism (SNP) most strongly associated with serum immunoglobulin E (IgE) levels, a key antibody in allergy. Structural Equation Modeling (SEM) indicated that LL module is at least partially reactive to blood lipid levels. Taken together, this study uncovers a gene network linking blood lipids and circulating cell types and offers insight into the hypothesis that the inflammatory response plays a prominent role in metabolism and the potential control of atherogenesis.


Vyšlo v časopise: An Immune Response Network Associated with Blood Lipid Levels. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001113
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001113

Souhrn

While recent scans for genetic variation associated with human disease have been immensely successful in uncovering large numbers of loci, far fewer studies have focused on the underlying pathways of disease pathogenesis. Many loci which are associated with disease and complex phenotypes map to non-coding, regulatory regions of the genome, indicating that modulation of gene transcription plays a key role. Thus, this study generated genome-wide profiles of both genetic and transcriptional variation from the total blood extracts of over 500 randomly-selected, unrelated individuals. Using measurements of blood lipids, key players in the progression of atherosclerosis, three levels of biological information are integrated in order to investigate the interactions between circulating leukocytes and proximal lipid compounds. Pair-wise correlations between gene expression and lipid concentration indicate a prominent role for basophil granulocytes and mast cells, cell types central to powerful allergic and inflammatory responses. Network analysis of gene co-expression showed that the top associations function as part of a single, previously unknown gene module, the Lipid Leukocyte (LL) module. This module replicated in T cells from an independent cohort while also displaying potential tissue specificity. Further, genetic variation driving LL module expression included the single nucleotide polymorphism (SNP) most strongly associated with serum immunoglobulin E (IgE) levels, a key antibody in allergy. Structural Equation Modeling (SEM) indicated that LL module is at least partially reactive to blood lipid levels. Taken together, this study uncovers a gene network linking blood lipids and circulating cell types and offers insight into the hypothesis that the inflammatory response plays a prominent role in metabolism and the potential control of atherogenesis.


Zdroje

1. KannelWB

DawberTR

KaganA

RevotskieN

StokesJIII

1961 Factors of risk in the development of coronary heart disease–six year follow-up experience. the framingham study. Ann Intern Med 55 33 50

2. MillerNE

MillerGJ

1975 Letter: High-density lipoprotein and atherosclerosis. Lancet 1 7914 1033

3. RossR

1999 Atherosclerosis–an inflammatory disease. N Engl J Med 340 2 115 126

4. AulchenkoYS

RipattiS

LindqvistI

BoomsmaD

HeidIM

2009 Loci influencing lipid levels and coronary heart disease risk in 16 european population cohorts. Nat Genet 41 1 47 55

5. ProkopenkoI

LangenbergC

FlorezJC

SaxenaR

SoranzoN

2009 Variants in MTNR1B influence fasting glucose levels. Nat Genet 41 1 77 81

6. SabattiC

ServiceSK

HartikainenAL

PoutaA

RipattiS

2009 Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 41 1 35 46

7. SandhuMS

WaterworthDM

DebenhamSL

WheelerE

PapadakisK

2008 LDL-cholesterol concentrations: A genome-wide association study. Lancet 371 9611 483 491

8. HanssonGK

2005 Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352 16 1685 1695

9. HotamisligilGS

2006 Inflammation and metabolic disorders. Nature 444 7121 860 867

10. HirosumiJ

TuncmanG

ChangL

GorgunCZ

UysalKT

2002 A central role for JNK in obesity and insulin resistance. Nature 420 6913 333 336

11. BaudV

LiuZG

BennettB

SuzukiN

XiaY

1999 Signaling by proinflammatory cytokines: Oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev 13 10 1297 1308

12. YuC

ChenY

ClineGW

ZhangD

ZongH

2002 Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277 52 50230 50236

13. ArkanMC

HevenerAL

GretenFR

MaedaS

LiZW

2005 IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11 2 191 198

14. YuC

ChenY

ClineGW

ZhangD

ZongH

2002 Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277 52 50230 50236

15. PerseghinG

PetersenK

ShulmanGI

2003 Cellular mechanism of insulin resistance: Potential links with inflammation. Int J Obes Relat Metab Disord 27 Suppl 3 S6 11

16. AlipourA

van OostromAJ

IzraeljanA

VerseydenC

CollinsJM

2008 Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 28 4 792 797

17. VaisarT

PennathurS

GreenPS

GharibSA

HoofnagleAN

2007 Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest 117 3 746 756

18. ChenY

ZhuJ

LumPY

YangX

PintoS

2008 Variations in DNA elucidate molecular networks that cause disease. Nature 452 7186 429 435

19. EmilssonV

ThorleifssonG

ZhangB

LeonardsonAS

ZinkF

2008 Genetics of gene expression and its effect on disease. Nature 452 7186 423 428

20. BremerJ

1983 Carnitine–metabolism and functions. Physiol Rev 63 4 1420 1480

21. SugdenMC

2003 PDK4: A factor in fatness? Obes Res 11 2 167 169

22. WolinsNE

BrasaemleDL

BickelPE

2006 A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580 23 5484 5491

23. BildiriciI

RohCR

SchaiffWT

LewkowskiBM

NelsonDM

2003 The lipid droplet-associated protein adipophilin is expressed in human trophoblasts and is regulated by peroxisomal proliferator-activated receptor-gamma/retinoid X receptor. J Clin Endocrinol Metab 88 12 6056 6062

24. OlsenRK

OlpinSE

AndresenBS

MiedzybrodzkaZH

PourfarzamM

2007 ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 130 Pt 8 2045 2054

25. McQueenMJ

HawkenS

WangX

OunpuuS

SnidermanA

2008 Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): A case-control study. Lancet 372 9634 224 233

26. WhitneyAR

DiehnM

PopperSJ

AlizadehAA

BoldrickJC

2003 Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci U S A 100 4 1896 1901

27. AllisonDB

ThielB

St JeanP

ElstonRC

InfanteMC

1998 Multiple phenotype modeling in gene-mapping studies of quantitative traits: Power advantages. Am J Hum Genet 63 4 1190 1201

28. FerreiraMA

PurcellSM

2009 A multivariate test of association. Bioinformatics 25 1 132 133

29. TanimotoA

SasaguriY

OhtsuH

2006 Histamine network in atherosclerosis. Trends Cardiovasc Med 16 8 280 284

30. GonenB

O'DonnellP

PostTJ

QuinnTJ

SchulmanES

1987 Very low density lipoproteins (VLDL) trigger the release of histamine from human basophils. Biochim Biophys Acta 917 3 418 424

31. JorgensenEA

VogelsangTW

KniggeU

WatanabeT

WarbergJ

2006 Increased susceptibility to diet-induced obesity in histamine-deficient mice. Neuroendocrinology 83 5–6 289 294

32. FulopAK

FoldesA

BuzasE

HegyiK

MiklosIH

2003 Hyperleptinemia, visceral adiposity, and decreased glucose tolerance in mice with a targeted disruption of the histidine decarboxylase gene. Endocrinology 144 10 4306 4314

33. KraftS

KinetJP

2007 New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 7 5 365 378

34. WeidingerS

GiegerC

RodriguezE

BaurechtH

MempelM

2008 Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet 4 8 e1000166

35. PaananenK

KovanenPT

1994 Proteolysis and fusion of low density lipoprotein particles independently strengthen their binding to exocytosed mast cell granules. J Biol Chem 269 3 2023 2031

36. KokkonenJO

VartiainenM

KovanenPT

1986 Low density lipoprotein degradation by secretory granules of rat mast cells. sequential degradation of apolipoprotein B by granule chymase and carboxypeptidase A. J Biol Chem 261 34 16067 16072

37. PejlerG

KnightSD

HenningssonF

WernerssonS

2009 Novel insights into the biological function of mast cell carboxypeptidase A. Trends Immunol 30 8 401 408

38. TsaiFY

OrkinSH

1997 Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89 10 3636 3643

39. HorvathS

DongJ

2008 Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4 8 e1000117

40. LangfelderP

HorvathS

2008 WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9 559

41. DimasAS

DeutschS

StrangerBE

MontgomerySB

BorelC

2009 Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325 5945 1246 1250

42. StrangerBE

NicaAC

ForrestMS

DimasA

BirdCP

2007 Population genomics of human gene expression. Nat Genet 39 10 1217 1224

43. StrangerBE

ForrestMS

ClarkAG

MinichielloMJ

DeutschS

2005 Genome-wide associations of gene expression variation in humans. PLoS Genet 1 6 e78

44. GoringHH

CurranJE

JohnsonMP

DyerTD

CharlesworthJ

2007 Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 39 10 1208 1216

45. HasegawaM

NishiyamaC

NishiyamaM

AkizawaY

MitsuishiK

2003 A novel -66T/C polymorphism in fc epsilon RI alpha-chain promoter affecting the transcription activity: Possible relationship to allergic diseases. J Immunol 171 4 1927 1933

46. SchadtEE

LambJ

YangX

ZhuJ

EdwardsS

2005 An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37 7 710 717

47. LiR

TsaihSW

ShockleyK

StylianouIM

WergedalJ

2006 Structural model analysis of multiple quantitative traits. PLoS Genet 2 7 e114

48. AtenJE

FullerTF

LusisAJ

HorvathS

2008 Using genetic markers to orient the edges in quantitative trait networks: The NEO software. BMC Syst Biol 2 34

49. KaartinenM

PenttilaA

KovanenPT

1994 Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 90 4 1669 1678

50. KovanenPT

KaartinenM

PaavonenT

1995 Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92 5 1084 1088

51. BolstadBM

IrizarryRA

AstrandM

SpeedTP

2003 A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19 2 185 193

52. IrizarryRA

HobbsB

CollinF

Beazer-BarclayYD

AntonellisKJ

2003 Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4 2 249 264

53. TeoYY

InouyeM

SmallKS

GwilliamR

DeloukasP

2007 A genotype calling algorithm for the illumina BeadArray platform. Bioinformatics 23 20 2741 2746

54. MarchiniJ

HowieB

MyersS

McVeanG

DonnellyP

2007 A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39 7 906 913

55. PattersonN

PriceAL

ReichD

2006 Population structure and eigenanalysis. PLoS Genet 2 12 e190

56. ChurchillGA

DoergeRW

1994 Empirical threshold values for quantitative trait mapping. Genetics 138 3 963 971

57. MardiaKV

1979 Multivariate analysis London Academic Press

58. ZhangB

HorvathS

2005 A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4 Article17

59. WillerCJ

SannaS

JacksonAU

ScuteriA

BonnycastleLL

2008 Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40 2 161 169

60. FreemanTC

GoldovskyL

BroschM

van DongenS

MaziereP

2007 Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput Biol 3 10 2032 2042

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#