#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Heterozygosity for a Hypomorphic Polβ Mutation Reduces the Expansion Frequency in a Mouse Model of the Fragile X-Related Disorders


Unstable microsatellites are responsible for a number of debilitating human diseases known as the Repeat Expansion Diseases. The unstable microsatellites, which consist of tandem arrays of short repeat units, are prone to increase in length (expand) on intergenerational transmission and during the lifetime of the individual. Unlike the typical microsatellite instability seen in disorders like Lynch syndrome that arise from mutations in mismatch repair (MMR) genes, expansions of these microsatellites are abolished when MMR is lost. However, how MMR, which normally protects the genome against microsatellite instability, actually promotes microsatellite expansions in these diseases is unknown. There is evidence to suggest that a second DNA repair process, base excision repair (BER), may be involved, but whether the nicks generated early in the BER-process are subverted by an MMR-dependent pathway that generates expansions or whether some MMR proteins contribute to a BER-based expansion process is unclear. Here we show that a mutation that reduces the activity of Polβ, an essential BER enzyme, also reduces the expansion frequency. Since Polβ is essential for key events in BER downstream of the generation of nicks, our data favor a model in which expansions occur via a BER-dependent pathway in which MMR participates.


Vyšlo v časopise: Heterozygosity for a Hypomorphic Polβ Mutation Reduces the Expansion Frequency in a Mouse Model of the Fragile X-Related Disorders. PLoS Genet 11(4): e32767. doi:10.1371/journal.pgen.1005181
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005181

Souhrn

Unstable microsatellites are responsible for a number of debilitating human diseases known as the Repeat Expansion Diseases. The unstable microsatellites, which consist of tandem arrays of short repeat units, are prone to increase in length (expand) on intergenerational transmission and during the lifetime of the individual. Unlike the typical microsatellite instability seen in disorders like Lynch syndrome that arise from mutations in mismatch repair (MMR) genes, expansions of these microsatellites are abolished when MMR is lost. However, how MMR, which normally protects the genome against microsatellite instability, actually promotes microsatellite expansions in these diseases is unknown. There is evidence to suggest that a second DNA repair process, base excision repair (BER), may be involved, but whether the nicks generated early in the BER-process are subverted by an MMR-dependent pathway that generates expansions or whether some MMR proteins contribute to a BER-based expansion process is unclear. Here we show that a mutation that reduces the activity of Polβ, an essential BER enzyme, also reduces the expansion frequency. Since Polβ is essential for key events in BER downstream of the generation of nicks, our data favor a model in which expansions occur via a BER-dependent pathway in which MMR participates.


Zdroje

1. Mirkin SM (2006) DNA structures, repeat expansions and human hereditary disorders. Current Opinion in Structural Biology 16: 351–358. 16713248

2. Fry M, Usdin K (2006) Human Nucleotide Expansion Disorders; Gross H, editor. Heidelberg: Springer.

3. Chonchaiya W, Schneider A, Hagerman RJ (2009) Fragile X: a family of disorders. Adv Peds 56: 165–186.

4. Fry M, Loeb LA (1994) The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A 91: 4950–4954. 8197163

5. Renciuk D, Zemanek M, Kejnovska I, Vorlickova M (2009) Quadruplex-forming properties of FRAXA (CGG) repeats interrupted by (AGG) triplets. Biochimie 91: 416–422. doi: 10.1016/j.biochi.2008.10.012 19028545

6. Usdin K (1998) NGG-triplet repeats form similar intrastrand structures: implications for the triplet expansion diseases. Nucleic Acids Res 26: 4078–4085. 9705522

7. Usdin K, Woodford KJ (1995) CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res 23: 4202–4209. 7479085

8. Mitas M, Yu A, Dill J, Haworth IS (1995) The trinucleotide repeat sequence d(CGG)15 forms a heat-stable hairpin containing Gsyn. Ganti base pairs. Biochemistry 34: 12803–12811. 7548035

9. Yu A, Barron MD, Romero RM, Christy M, Gold B, et al. (1997) At physiological pH, d(CCG)15 forms a hairpin containing protonated cytosines and a distorted helix. Biochemistry 36: 3687–3699. 9132022

10. Fojtik P, Vorlickova M (2001) The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH. Nucleic Acids Res 29: 4684–4690. 11713318

11. Loomis EW, Sanz LA, Chedin F, Hagerman PJ (2014) Transcription-Associated R-Loop Formation across the Human FMR1 CGG-Repeat Region. PLoS Genet 10: e1004294. doi: 10.1371/journal.pgen.1004294 24743386

12. Groh M, Lufino MM, Wade-Martins R, Gromak N (2014) R-loops Associated with Triplet Repeat Expansions Promote Gene Silencing in Friedreich Ataxia and Fragile X Syndrome. PLoS Genet 10: e1004318. doi: 10.1371/journal.pgen.1004318 24787137

13. Grabczyk E, Mancuso M, Sammarco MC (2007) A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 35: 5351–5359. 17693431

14. Entezam A, Lokanga AR, Le W, Hoffman G, Usdin K (2010) Potassium bromate, a potent DNA oxidizing agent, exacerbates germline repeat expansion in a fragile X premutation mouse model. Hum Mutat 31: 611–616. doi: 10.1002/humu.21237 20213777

15. Kovtun IV, Liu Y, Bjoras M, Klungland A, Wilson SH, et al. (2007) OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447: 447–452. 17450122

16. Mollersen L, Rowe AD, Illuzzi JL, Hildrestrand GA, Gerhold KJ, et al. (2012) Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice. Human molecular genetics 21: 4939–4947. doi: 10.1093/hmg/dds337 22914735

17. Foiry L, Dong L, Savouret C, Hubert L, te Riele H, et al. (2006) Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice. Hum Genet 119: 520–526. 16552576

18. Kovtun IV, McMurray CT (2001) Trinucleotide expansion in haploid germ cells by gap repair. Nat Genet 27: 407–411. 11279522

19. Lokanga RA, Zhao X-N, Usdin K (2014) The mismatch repair protein, MSH2, is rate-limiting for repeat expansion in a Fragile X premutation mouse model. Hum Mutat 35: 129–136. 24130133

20. Manley K, Shirley TL, Flaherty L, Messer A (1999) Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat Genet 23: 471–473. 10581038

21. Savouret C, Brisson E, Essers J, Kanaar R, Pastink A, et al. (2003) CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J 22: 2264–2273. 12727892

22. Gomes-Pereira M, Fortune MT, Ingram L, McAbney JP, Monckton DG (2004) Pms2 is a genetic enhancer of trinucleotide CAG.CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion. Hum Mol Genet 13: 1815–1825. 15198993

23. Du J, Campau E, Soragni E, Ku S, Puckett JW, et al. (2012) Role of mismatch repair enzymes in GAA.TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. J Biol Chem 287: 29861–29872. doi: 10.1074/jbc.M112.391961 22798143

24. Halabi A, Ditch S, Wang J, Grabczyk E (2012) DNA mismatch repair complex MutSbeta promotes GAA.TTC repeat expansion in human cells. J Biol Chem 287: 29958–29967. doi: 10.1074/jbc.M112.356758 22787155

25. Gannon AM, Frizzell A, Healy E, Lahue RS (2012) MutSbeta and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells. Nucleic Acids Res 40: 10324–10333. doi: 10.1093/nar/gks810 22941650

26. Pinto RM, Dragileva E, Kirby A, Lloret A, Lopez E, et al. (2013) Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches. PLoS Genet 9: e1003930. doi: 10.1371/journal.pgen.1003930 24204323

27. Pena-Diaz J, Bregenhorn S, Ghodgaonkar M, Follonier C, Artola-Boran M, et al. (2012) Noncanonical mismatch repair as a source of genomic instability in human cells. Mol Cell 47: 669–680. doi: 10.1016/j.molcel.2012.07.006 22864113

28. Washington SL, Yoon MS, Chagovetz AM, Li SX, Clairmont CA, et al. (1997) A genetic system to identify DNA polymerase beta mutator mutants. Proc Natl Acad Sci U S A 94: 1321–1326. 9037051

29. Senejani AG, Dalal S, Liu Y, Nottoli TP, McGrath JM, et al. (2012) Y265C DNA polymerase beta knockin mice survive past birth and accumulate base excision repair intermediate substrates. Proc Natl Acad Sci U S A 109: 6632–6637. doi: 10.1073/pnas.1200800109 22493258

30. Clairmont CA, Sweasy JB (1998) The Pol beta-14 dominant negative rat DNA polymerase beta mutator mutant commits errors during the gap-filling step of base excision repair in Saccharomyces cerevisiae. J Bact 180: 2292–2297. 9573177

31. Tome S, Manley K, Simard JP, Clark GW, Slean MM, et al. (2013) MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice. PLoS genetics 9: e1003280. doi: 10.1371/journal.pgen.1003280 23468640

32. Allen D, Herbert DC, McMahan CA, Rotrekl V, Sobol RW, et al. (2008) Mutagenesis is elevated in male germ cells obtained from DNA polymerase-beta heterozygous mice. Biol Reprod 79: 824–831. doi: 10.1095/biolreprod.108.069104 18650495

33. Ray S, Menezes MR, Senejani A, Sweasy JB (2013) Cellular roles of DNA polymerase beta. Yale J Biol Med 86: 463–469. 24348210

34. Gomes-Pereira M, Bidichandani SI, Monckton DG (2004) Analysis of unstable triplet repeats using small-pool polymerase chain reaction. Methods Mol Biol 277: 61–76. 15201449

35. Crawford DC, Wilson B, Sherman SL (2000) Factors involved in the initial mutation of the fragile X CGG repeat as determined by sperm small pool PCR. Hum Mol Genet 9: 2909–2918. 11092767

36. Zhao X-N, Usdin K (2014) Gender and cell-type specific effects of the transcription coupled repair protein, ERCC6/CSB, on repeat expansion in a mouse model of the Fragile X-related disorders. Hum Mutat 35: 341–349. 24352881

37. Lee JM, Zhang J, Su AI, Walker JR, Wiltshire T, et al. (2010) A novel approach to investigate tissue-specific trinucleotide repeat instability. BMC Syst Biol 4: 29. doi: 10.1186/1752-0509-4-29 20302627

38. Lokanga RA, Entezam A, Kumari D, Yudkin D, Qin M, et al. (2013) Somatic expansion in mouse and human carriers of Fragile X premutation alleles. Hum Mutat 34: 157–166. doi: 10.1002/humu.22177 22887750

39. Goula AV, Berquist BR, Wilson DM 3rd, Wheeler VC, Trottier Y, et al. (2009) Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet 5: e1000749. doi: 10.1371/journal.pgen.1000749 19997493

40. Mason AG, Tome S, Simard JP, Libby RT, Bammler TK, et al. (2013) Expression levels of DNA replication and repair genes predict regional somatic repeat instability in the brain but are not altered by polyglutamine disease protein expression or age. Human Molecular Genetics.

41. Sukhanova MV, Khodyreva SN, Lebedeva NA, Prasad R, Wilson SH, et al. (2005) Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Res 33: 1222–1229. 15731342

42. Liu Y, Prasad R, Beard WA, Hou EW, Horton JK, et al. (2009) Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion. J Biol Chem 284: 28352–28366. doi: 10.1074/jbc.M109.050286 19674974

43. Chan NL, Guo J, Zhang T, Mao G, Hou C, et al. (2013) Coordinated processing of 3' slipped (CAG)n/(CTG)n hairpins by DNA polymerases beta and delta preferentially induces repeat expansions. J Biol Chem 288: 15015–15022. doi: 10.1074/jbc.M113.464370 23585564

44. Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM (2004) Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev 18: 2764–2773. 15520275

45. Mollersen L, Rowe AD, Larsen E, Rognes T, Klungland A (2010) Continuous and periodic expansion of CAG repeats in Huntington's disease R6/1 mice. PLoS Genet 6: e1001242. doi: 10.1371/journal.pgen.1001242 21170307

46. Lee JM, Pinto RM, Gillis T, St Claire JC, Wheeler VC (2011) Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver. PLoS One 6: e23647. doi: 10.1371/journal.pone.0023647 21897851

47. Evans AR, Limp-Foster M, Kelley MR (2000) Going APE over ref-1. Mutat Res 461: 83–108. 11018583

48. Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11: 3610–3618. 4626532

49. Nakamura J, Swenberg JA (1999) Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res 59: 2522–2526. 10363965

50. Lokanga AR, Zhao X-N, Entezam A, Usdin K (2014) X inactivation plays a major role in the gender bias in somatic expansion in a mouse model of the Fragile X-related Disorders: implications for the mechanism of repeat expansion. Hum Mol Genet 23: 4985–4994. doi: 10.1093/hmg/ddu213 24858908

51. Grasso M, Boon EM, Filipovic-Sadic S, van Bunderen PA, Gennaro E, et al. (2014) A novel methylation PCR that offers standardized determination of FMR1 methylation and CGG repeat length without southern blot analysis. J Mol Diagn 16: 23–31. doi: 10.1016/j.jmoldx.2013.09.004 24177047

52. Amouroux R, Campalans A, Epe B, Radicella JP (2010) Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions. Nucleic Acids Res 38: 2878–2890. doi: 10.1093/nar/gkp1247 20071746

53. Lan L, Nakajima S, Wei L, Sun L, Hsieh CL, et al. (2014) Novel method for site-specific induction of oxidative DNA damage reveals differences in recruitment of repair proteins to heterochromatin and euchromatin. Nucleic Acids Res 42: 2330–2345. doi: 10.1093/nar/gkt1233 24293652

54. Entezam A, Biacsi R, Orrison B, Saha T, Hoffman GE, et al. (2007) Regional FMRP deficits and large repeat expansions into the full mutation range in a new Fragile X premutation mouse model. Gene 395: 125–134. 17442505

55. Lavedan C, Grabczyk E, Usdin K, Nussbaum RL (1998) Long uninterrupted CGG repeats within the first exon of the human FMR1 gene are not intrinsically unstable in transgenic mice. Genomics 50: 229–240. 9653650

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#