Imputation-Based Population Genetics Analysis of Malaria Parasites
Characterizing genetic diversity and function in Plasmodium falciparum, including identifying determinants of emerging drug resistance, is crucial to informing public health strategies to contain and eliminate this malaria parasite. The lack of a robust framework to handle missing P. falciparum genotypes arising from next-generation sequencing efforts, impedes genome-wide methods that depend on complete genotype information, and often leads to analysis that discards entire regions of the genome. This study is the first to evaluate the performance of missing data imputation or “filling in” in the P. falciparum genome, where the correlation between genetic markers is generally lower than in the human genome. We considered 86k markers in 459 clinical isolates from 4 malaria-endemic populations of Africa and Southeast Asia. Although low genotype missingness per SNP (<10%) results in complete datasets for only 25% of SNPs, imputation is accurate. This finding is corroborated by the ability of imputed haplotype analysis to recover several well-established vaccine candidates and drug resistance loci, including kelch13—a recently-validated gene involved in artemisinin resistance. Our work demonstrates that imputation can assist the application of genome-wide methods to identify the determinants of P. falciparum diversity, including those involved in drug resistance, immune evasion, and host virulence.
Vyšlo v časopise:
Imputation-Based Population Genetics Analysis of Malaria Parasites. PLoS Genet 11(4): e32767. doi:10.1371/journal.pgen.1005131
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005131
Souhrn
Characterizing genetic diversity and function in Plasmodium falciparum, including identifying determinants of emerging drug resistance, is crucial to informing public health strategies to contain and eliminate this malaria parasite. The lack of a robust framework to handle missing P. falciparum genotypes arising from next-generation sequencing efforts, impedes genome-wide methods that depend on complete genotype information, and often leads to analysis that discards entire regions of the genome. This study is the first to evaluate the performance of missing data imputation or “filling in” in the P. falciparum genome, where the correlation between genetic markers is generally lower than in the human genome. We considered 86k markers in 459 clinical isolates from 4 malaria-endemic populations of Africa and Southeast Asia. Although low genotype missingness per SNP (<10%) results in complete datasets for only 25% of SNPs, imputation is accurate. This finding is corroborated by the ability of imputed haplotype analysis to recover several well-established vaccine candidates and drug resistance loci, including kelch13—a recently-validated gene involved in artemisinin resistance. Our work demonstrates that imputation can assist the application of genome-wide methods to identify the determinants of P. falciparum diversity, including those involved in drug resistance, immune evasion, and host virulence.
Zdroje
1. Volkman SK, Neafsey DE, Schaffner SF, Park DJ, Wirth DF. Harnessing genomics and genome biology to understand malaria biology. Nat Rev Genet. 2012 May;13(5):315–28. doi: 10.1038/nrg3187 22495435
2. Preston MD, Assefa SA, Ocholla H, Sutherland CJ, Borrmann S, Nzila A, et al. PlasmoView: A web-based resource to visualise global Plasmodium falciparum genomic variation. J Infect Dis. 2013 Dec 12.
3. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014 Jan 2;505(7481):50–5. doi: 10.1038/nature12876 24352242
4. Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature [Internet]. 2012 Jun 13 [cited 2013 Aug 19];advance online publication. http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11174.html#supplementary-information.
5. Borrmann S, Straimer J, Mwai L, Abdi A, Rippert A, Okombo J, et al. Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya. Sci Rep [Internet]. 2013 Nov 25 [cited 2014 Feb 7];3. http://www.nature.com/srep/2013/131125/srep03318/full/srep03318.html.
6. Ochola H, Mipando M, Jensen AT, Campino S, MacInnis B, Alcock D, et al. Whole-genome sequencing of Malawi Plasmodium falciparum paediatric isolates reveal selective pressure on putative drug and vaccine genes and distinct selection differences from West Africa and Asia. Mol Biol Evol. 2013 in press.
7. Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, et al. Population Genomic Scan for Candidate Signatures of Balancing Selection to Guide Antigen Characterization in Malaria Parasites. PLoS Genet. 2012 Nov 1;8(11):e1002992. doi: 10.1371/journal.pgen.1002992 23133397
8. Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature. 2002 Jul 18;418(6895):320–3. 12124623
9. Hyde JE. The dihydrofolate reductase-thymidylate synthetase gene in the drug resistance of malaria parasites. Pharmacol Ther. 1990;48(1):45–59. 2274577
10. Wang P, Read M, Sims PFG, Hyde JE. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol Microbiol. 1997 Mar 1;23(5):979–86. 9076734
11. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov 1;123(3):585–95. 2513255
12. Tetteh KKA, Stewart LB, Ochola LI, Amambua-Ngwa A, Thomas AW, Marsh K, et al. Prospective Identification of Malaria Parasite Genes under Balancing Selection. PLoS ONE. 2009 May 15;4(5):e5568. doi: 10.1371/journal.pone.0005568 19440377
13. Lobo CA, Kumar N. Sexual Differentiation and Development in the Malaria Parasite. Parasitol Today. 1998 Apr 1;14(4):146–50. 17040732
14. Mu J, Awadalla P, Duan J, McGee KM, Keebler J, Seydel K, et al. Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. Nat Genet. 2007 Jan;39(1):126–30. 17159981
15. Volkman SK, Sabeti PC, DeCaprio D, Neafsey DE, Schaffner SF, Milner DA Jr, et al. A genome-wide map of diversity in Plasmodium falciparum. Nat Genet. 2007 Jan;39(1):113–9. 17159979
16. Neafsey DE, Schaffner SF, Volkman SK, Park D, Montgomery P, Milner DA, et al. Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence. Genome Biol. 2008 Dec 15;9(12):R171. doi: 10.1186/gb-2008-9-12-r171 19077304
17. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009 Jun;5(6):e1000529. doi: 10.1371/journal.pgen.1000529 19543373
18. Browning BL, Browning SR. A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals. Am J Hum Genet. 2009 Feb 13;84(2):210–23. doi: 10.1016/j.ajhg.2009.01.005 19200528
19. Li N, Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics. 2003 Dec;165(4):2213–33. 14704198
20. Jiang H, Li N, Gopalan V, Zilversmit MM, Varma S, Nagarajan V, et al. High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol. 2011 Apr 4;12(4):R33. doi: 10.1186/gb-2011-12-4-r33 21463505
21. Samarakoon U, Regier A, Tan A, Desany BA, Collins B, Tan JC, et al. High-throughput 454 resequencing for allele discovery and recombination mapping in Plasmodium falciparum. BMC Genomics. 2011 Feb 17;12(1):116.
22. McVean G, Awadalla P, Fearnhead P. A Coalescent-Based Method for Detecting and Estimating Recombination From Gene Sequences. Genetics. 2002 Mar 1;160(3):1231–41. 11901136
23. Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002 Oct 24;419(6909):832–7. 12397357
24. Weir BS, Cockerham CC. Estimating F-Statistics for the Analysis of Population Structure. Evolution. 1984 Nov;38(6):1358.
25. PlasmoDB: The Plasmodium genome resource. [Internet]. [cited 2014 Feb 7]. http://plasmodb.org/plasmo/.
26. Tang K, Thornton KR, Stoneking M. A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome. PLoS Biol. 2007 Jun 19;5(7):e171. 17579516
27. Molina-Cruz A, Garver LS, Alabaster A, Bangiolo L, Haile A, Winikor J, et al. The Human Malaria Parasite Pfs47 Gene Mediates Evasion of the Mosquito Immune System. Science. 2013 May 24;340(6135):984–7. doi: 10.1126/science.1235264 23661646
28. Joy DA, Feng X, Mu J, Furuya T, Chotivanich K, Krettli AU, et al. Early Origin and Recent Expansion of Plasmodium falciparum. Science. 2003 Apr 11;300(5617):318–21. 12690197
29. Chang H-H, Moss EL, Park DJ, Ndiaye D, Mboup S, Volkman SK, et al. Malaria life cycle intensifies both natural selection and random genetic drift. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20129–34. doi: 10.1073/pnas.1319857110 24259712
30. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 Bethesda Md. 2011 Nov;1(6):457–70. doi: 10.1534/g3.111.001198 22384356
31. Chan AH, Jenkins PA, Song YS. Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster. PLoS Genet. 2012 Dec 20;8(12):e1003090. doi: 10.1371/journal.pgen.1003090 23284288
32. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol. 2010 Dec;34(8):816–34. doi: 10.1002/gepi.20533 21058334
33. Mobegi VA, Duffy CW, Amambua-Ngwa A, Loua KM, Laman E, Nwakanma DC, et al. Genome-Wide Analysis of Selection on the Malaria Parasite Plasmodium falciparum in West African Populations of Differing Infection Endemicity. Mol Biol Evol. 2014 Mar 18;msu106.
34. Nwakanma DC, Duffy CW, Amambua-Ngwa A, Oriero EC, Bojang KA, Pinder M, et al. Changes in Malaria Parasite Drug Resistance in an Endemic Population Over a 25-Year Period With Resulting Genomic Evidence of Selection. J Infect Dis. 2013 Nov 21;jit618.
35. Park DJ, Lukens AK, Neafsey DE, Schaffner SF, Chang H-H, Valim C, et al. Sequence-based association and selection scans identify drug resistance loci in the Plasmodium falciparum malaria parasite. Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13052–7. doi: 10.1073/pnas.1210585109 22826220
36. Mu J, Myers RA, Jiang H, Liu S, Ricklefs S, Waisberg M, et al. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat Genet. 2010 Mar;42(3):268–71. doi: 10.1038/ng.528 20101240
37. Weedall GD, Preston BMJ, Thomas AW, Sutherland CJ, Conway DJ. Differential evidence of natural selection on two leading sporozoite stage malaria vaccine candidate antigens. Int J Parasitol. 2007 Jan;37(1):77–85. 17046771
38. Charlesworth D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2006 Apr;2(4):e64. 16683038
39. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl. 2009 Aug 15;25(16):2078–9.
40. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011 Aug 1;27(15):2156–8. doi: 10.1093/bioinformatics/btr330 21653522
41. Ranford-Cartwright LC, Mwangi JM. Analysis of malaria parasite phenotypes using experimental genetic crosses of Plasmodium falciparum. Int J Parasitol. 2012 May 15;42(6):529–34. doi: 10.1016/j.ijpara.2012.03.004 22475816
42. Hudson RR. Two-Locus Sampling Distributions and Their Application. Genetics. 2001 Dec 1;159(4):1805–17. 11779816
43. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A Map of Recent Positive Selection in the Human Genome. PLoS Biol. 2006 Mar 7;4(3):e72. 16494531
44. Gautier M, Vitalis R. rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinforma Oxf Engl. 2012 Apr 15;28(8):1176–7.
45. Pfeifer B, Wittelsbürger U, Onsins SER, Lercher MJ. PopGenome: An efficient swiss army knife for population genomic analyses in R. Mol Biol Evol. 2014 Apr 16;msu136.
46. Pembleton LW, Cogan NOI, Forster JW. StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour. 2013 Sep 1;13(5):946–52. doi: 10.1111/1755-0998.12129 23738873
47. Mu J, Awadalla P, Duan J, McGee KM, Joy DA, McVean GAT, et al. Recombination Hotspots and Population Structure in Plasmodium falciparum. PLoS Biol. 2005 Sep 13;3(10):e335. 16144426
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 4
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Lack of GDAP1 Induces Neuronal Calcium and Mitochondrial Defects in a Knockout Mouse Model of Charcot-Marie-Tooth Neuropathy
- Proteolysis of Virulence Regulator ToxR Is Associated with Entry of into a Dormant State
- Frameshift Variant Associated with Novel Hoof Specific Phenotype in Connemara Ponies
- Ataxin-2 Regulates Translation in a New BAC-SCA2 Transgenic Mouse Model