#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Host Genetic Variation Influences Gene Expression Response to Rhinovirus Infection


Rhinovirus (RV) is the predominant cause of the common cold. However, infections with RV result in a broad spectrum of effects ranging from asymptomatic infections to severe lower respiratory illnesses. We hypothesized that diversity in response to RV-infections is, at least in part, due to variation in the host genome. To address this, we mapped the genetic variations that are associated with gene expression response (reQTLs) to RV-infection in PBMCs. Here, we report local reQTLs for 38 genes including those with known functions in viral response such as UBA7, OAS1, IRF5 and those that have been previously associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). We also show that reQTL regions are enriched for binding sites of the virus-activated STAT2 transcription factor, suggesting a potential mechanism of action for five of the reQTLs identified. Overall, the reQTLs we identified represent promising candidates to affect individual’s immune response to RV infections and further targeted studies of the reQTL regions might lead to improved control and treatment of RV-associated immune and respiratory diseases.


Vyšlo v časopise: Host Genetic Variation Influences Gene Expression Response to Rhinovirus Infection. PLoS Genet 11(4): e32767. doi:10.1371/journal.pgen.1005111
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005111

Souhrn

Rhinovirus (RV) is the predominant cause of the common cold. However, infections with RV result in a broad spectrum of effects ranging from asymptomatic infections to severe lower respiratory illnesses. We hypothesized that diversity in response to RV-infections is, at least in part, due to variation in the host genome. To address this, we mapped the genetic variations that are associated with gene expression response (reQTLs) to RV-infection in PBMCs. Here, we report local reQTLs for 38 genes including those with known functions in viral response such as UBA7, OAS1, IRF5 and those that have been previously associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). We also show that reQTL regions are enriched for binding sites of the virus-activated STAT2 transcription factor, suggesting a potential mechanism of action for five of the reQTLs identified. Overall, the reQTLs we identified represent promising candidates to affect individual’s immune response to RV infections and further targeted studies of the reQTL regions might lead to improved control and treatment of RV-associated immune and respiratory diseases.


Zdroje

1. Arruda E, Pitkaranta A, Witek TJ Jr., Doyle CA, Hayden FG (1997) Frequency and natural history of rhinovirus infections in adults during autumn. J Clin Microbiol 35: 2864–2868. 9350748

2. Andrewes CH, Chaproniere DM, Gompels AE, Pereira HG, Roden AT (1953) Propagation of common-cold virus in tissue cultures. Lancet 265: 546–547. 13097995

3. Fox JP, Cooney MK, Hall CE (1975) The Seattle virus watch. V. Epidemiologic observations of rhinovirus infections, 1965–1969, in families with young children. Am J Epidemiol 101: 122–143. 164769

4. Winther B, Hayden FG, Hendley JO (2006) Picornavirus infections in children diagnosed by RT-PCR during longitudinal surveillance with weekly sampling: Association with symptomatic illness and effect of season. J Med Virol 78: 644–650. 16555289

5. Winther B (2011) Rhinovirus infections in the upper airway. Proc Am Thorac Soc 8: 79–89. doi: 10.1513/pats.201006-039RN 21364225

6. Gern JE (2010) The ABCs of rhinoviruses, wheezing, and asthma. J Virol 84: 7418–7426. doi: 10.1128/JVI.02290-09 20375160

7. Helminen M, Nuolivirta K, Virta M, Halkosalo A, Korppi M, et al. (2008) IL-10 gene polymorphism at -1082 A/G is associated with severe rhinovirus bronchiolitis in infants. Pediatr Pulmonol 43: 391–395. doi: 10.1002/ppul.20793 18286551

8. Caliskan M, Bochkov YA, Kreiner-Moller E, Bonnelykke K, Stein MM, et al. (2013) Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med 368: 1398–1407. doi: 10.1056/NEJMoa1211592 23534543

9. Kelly JT, Busse WW (2008) Host immune responses to rhinovirus: mechanisms in asthma. J Allergy Clin Immunol 122: 671–682; quiz 683–674. doi: 10.1016/j.jaci.2008.08.013 19014757

10. Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, et al. (2010) Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol 3: 69–80. doi: 10.1038/mi.2009.109 19710636

11. Chen Y, Hamati E, Lee PK, Lee WM, Wachi S, et al. (2006) Rhinovirus induces airway epithelial gene expression through double-stranded RNA and IFN-dependent pathways. Am J Respir Cell Mol Biol 34: 192–203. 16210696

12. Proud D, Turner RB, Winther B, Wiehler S, Tiesman JP, et al. (2008) Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med 178: 962–968. doi: 10.1164/rccm.200805-670OC 18658112

13. Arruda E, Boyle TR, Winther B, Pevear DC, Gwaltney JM Jr., et al. (1995) Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization. J Infect Dis 171: 1329–1333. 7751712

14. Broberg E, Niemela J, Lahti E, Hyypia T, Ruuskanen O, et al. (2011) Human rhinovirus C—associated severe pneumonia in a neonate. J Clin Virol 51: 79–82. doi: 10.1016/j.jcv.2011.01.018 21342784

15. Fuji N, Suzuki A, Lupisan S, Sombrero L, Galang H, et al. (2011) Detection of human rhinovirus C viral genome in blood among children with severe respiratory infections in the Philippines. PLoS One 6: e27247. doi: 10.1371/journal.pone.0027247 22087272

16. Tapparel C, L'Huillier AG, Rougemont AL, Beghetti M, Barazzone-Argiroffo C, et al. (2009) Pneumonia and pericarditis in a child with HRV-C infection: a case report. J Clin Virol 45: 157–160. doi: 10.1016/j.jcv.2009.03.014 19427260

17. Gern JE, Vrtis R, Kelly EA, Dick EC, Busse WW (1996) Rhinovirus produces nonspecific activation of lymphocytes through a monocyte-dependent mechanism. J Immunol 157: 1605–1612. 8759745

18. Yamaya M, Sasaki H (2003) Rhinovirus and asthma. Viral Immunol 16: 99–109. 12828863

19. Lai C, Struckhoff JJ, Schneider J, Martinez-Sobrido L, Wolff T, et al. (2009) Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection. J Virol 83: 1147–1151. doi: 10.1128/JVI.00105-08 19004958

20. Yuan W, Krug RM (2001) Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 20: 362–371. 11157743

21. Malathi K, Paranjape JM, Bulanova E, Shim M, Guenther-Johnson JM, et al. (2005) A transcriptional signaling pathway in the IFN system mediated by 2'-5'-oligoadenylate activation of RNase L. Proc Natl Acad Sci U S A 102: 14533–14538. 16203993

22. Silverman RH (2007) Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81: 12720–12729. 17804500

23. Barnes BJ, Moore PA, Pitha PM (2001) Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem 276: 23382–23390. 11303025

24. Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36: 431–432. 15118671

25. Fedetz M, Matesanz F, Caro-Maldonado A, Fernandez O, Tamayo JA, et al. (2006) OAS1 gene haplotype confers susceptibility to multiple sclerosis. Tissue Antigens 68: 446–449. 17092260

26. Litonjua AA, Lasky-Su J, Schneiter K, Tantisira KG, Lazarus R, et al. (2008) ARG1 is a novel bronchodilator response gene: screening and replication in four asthma cohorts. Am J Respir Crit Care Med 178: 688–694. doi: 10.1164/rccm.200709-1363OC 18617639

27. Morgan AR, Han DY, Lam WJ, Fraser AG, Ferguson LR (2010) Association analysis of 3p21 with Crohn's disease in a New Zealand population. Hum Immunol 71: 602–609. doi: 10.1016/j.humimm.2010.03.003 20307617

28. Sigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC, et al. (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76: 528–537. 15657875

29. Wikman H, Piirila P, Rosenberg C, Luukkonen R, Kaaria K, et al. (2002) N-Acetyltransferase genotypes as modifiers of diisocyanate exposure-associated asthma risk. Pharmacogenetics 12: 227–233. 11927838

30. Choudhry S, Taub M, Mei R, Rodriguez-Santana J, Rodriguez-Cintron W, et al. (2008) Genome-wide screen for asthma in Puerto Ricans: evidence for association with 5q23 region. Hum Genet 123: 455–468. doi: 10.1007/s00439-008-0495-7 18401594

31. Janssen R, Bont L, Siezen CL, Hodemaekers HM, Ermers MJ, et al. (2007) Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes. J Infect Dis 196: 826–834. 17703412

32. Ohar JA, Hamilton RF Jr., Zheng S, Sadeghnejad A, Sterling DA, et al. (2010) COPD is associated with a macrophage scavenger receptor-1 gene sequence variation. Chest 137: 1098–1107. doi: 10.1378/chest.09-1655 20081102

33. Young RP, Hopkins RJ, Hay BA, Epton MJ, Mills GD, et al. (2009) A gene-based risk score for lung cancer susceptibility in smokers and ex-smokers. Postgrad Med J 85: 515–524. doi: 10.1136/pgmj.2008.077107 19789190

34. Flamant C, Henrion-Caude A, Boelle PY, Bremont F, Brouard J, et al. (2004) Glutathione-S-transferase M1, M3, P1 and T1 polymorphisms and severity of lung disease in children with cystic fibrosis. Pharmacogenetics 14: 295–301. 15115915

35. Lee MN, Ye C, Villani AC, Raj T, Li W, et al. (2014) Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343: 1246980. doi: 10.1126/science.1246980 24604203

36. Maranville JC, Luca F, Richards AL, Wen X, Witonsky DB, et al. (2011) Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes. PLoS Genet 7: e1002162. doi: 10.1371/journal.pgen.1002162 21750684

37. Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74. doi: 10.1038/nature11247 22955616

38. Park C, Li S, Cha E, Schindler C (2000) Immune response in Stat2 knockout mice. Immunity 13: 795–804. 11163195

39. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, et al. (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5: e1000386. doi: 10.1371/journal.pcbi.1000386 19461883

40. Fehrmann RS, Jansen RC, Veldink JH, Westra HJ, Arends D, et al. (2011) Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet 7: e1002197. doi: 10.1371/journal.pgen.1002197 21829388

41. Barreiro LB, Tailleux L, Pai AA, Gicquel B, Marioni JC, et al. (2012) Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A 109: 1204–1209. doi: 10.1073/pnas.1115761109 22233810

42. Idaghdour Y, Quinlan J, Goulet JP, Berghout J, Gbeha E, et al. (2012) Evidence for additive and interaction effects of host genotype and infection in malaria. Proc Natl Acad Sci U S A 109: 16786–16793. doi: 10.1073/pnas.1204945109 22949651

43. Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, et al. (2014) Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343: 1246949. doi: 10.1126/science.1246949 24604202

44. Fuss IJ, Kanof ME, Smith PD, Zola H (2009) Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr Protoc Immunol Chapter 7: Unit7 1.

45. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19: 1655–1664. doi: 10.1101/gr.094052.109 19648217

46. Delaneau O, Marchini J, Zagury JF (2012) A linear complexity phasing method for thousands of genomes. Nat Methods 9: 179–181. doi: 10.1038/nmeth.1785 22138821

47. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5: e1000529. doi: 10.1371/journal.pgen.1000529 19543373

48. Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics 24: 1547–1548. doi: 10.1093/bioinformatics/btn224 18467348

49. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28: 882–883. doi: 10.1093/bioinformatics/bts034 22257669

50. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211 19131956

51. Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28: 1353–1358. doi: 10.1093/bioinformatics/bts163 22492648

52. Millstein J (2013) fdrci: Permutation-based FDR Point and Confidence Interval Estimation. R package version 20.

53. Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40: D930–934. doi: 10.1093/nar/gkr917 22064851

54. Pers TH, Timshel P, Hirschhorn JN (2014) SNPsnap: a Web-based tool for identification and annotation of matched SNPs. Bioinformatics.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#