#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The DNA Helicase Recql4 Is Required for Normal Osteoblast Expansion and Osteosarcoma Formation


Rothmund Thomson Syndrome (RTS), RAPADILINO Syndrome and Baller-Gerold Syndrome are very rare human syndromes associated with mutations in RECQL4. RECQL4 is important for controlling how cells divide and for preventing genome damage. Patients with RECQL4 mutations have problems with bone formation and a low bone mass, similar to osteoporosis. RTS patients have a highly increased risk of developing bone cancer (osteosarcoma). The role of RECQL4 in normal bone development and osteosarcoma formation is largely unknown. We have used mouse models to understand the specific role of Recql4 in bone development. Mice with Recql4 removed specifically from their bone cells have shortened bones and a reduced rate of bone formation. Therefore, RECQL4 is essential for normal bone development. Interestingly, the animals with no Recql4 in bone cells did not develop osteosarcoma. Using mouse models of osteosarcoma, we observed delayed cancer formation when Recql4 was also deleted. Further analysis demonstrated that bone cancer could not arise from Recql4 null cells even with concurrent p53 deletion. These studies clarify the role of RECQL4 in both normal and malignant bone biology and suggest that RECQL4 mutations that cause osteosarcoma most likely result in proteins with reduced, but not absent, function.


Vyšlo v časopise: The DNA Helicase Recql4 Is Required for Normal Osteoblast Expansion and Osteosarcoma Formation. PLoS Genet 11(4): e32767. doi:10.1371/journal.pgen.1005160
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005160

Souhrn

Rothmund Thomson Syndrome (RTS), RAPADILINO Syndrome and Baller-Gerold Syndrome are very rare human syndromes associated with mutations in RECQL4. RECQL4 is important for controlling how cells divide and for preventing genome damage. Patients with RECQL4 mutations have problems with bone formation and a low bone mass, similar to osteoporosis. RTS patients have a highly increased risk of developing bone cancer (osteosarcoma). The role of RECQL4 in normal bone development and osteosarcoma formation is largely unknown. We have used mouse models to understand the specific role of Recql4 in bone development. Mice with Recql4 removed specifically from their bone cells have shortened bones and a reduced rate of bone formation. Therefore, RECQL4 is essential for normal bone development. Interestingly, the animals with no Recql4 in bone cells did not develop osteosarcoma. Using mouse models of osteosarcoma, we observed delayed cancer formation when Recql4 was also deleted. Further analysis demonstrated that bone cancer could not arise from Recql4 null cells even with concurrent p53 deletion. These studies clarify the role of RECQL4 in both normal and malignant bone biology and suggest that RECQL4 mutations that cause osteosarcoma most likely result in proteins with reduced, but not absent, function.


Zdroje

1. Chu WK, Hickson ID (2009) RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 9: 644–654. doi: 10.1038/nrc2682 19657341

2. Brosh RM Jr. (2013) DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 13: 542–558. doi: 10.1038/nrc3560 23842644

3. Larizza L, Roversi G, Volpi L (2010) Rothmund-Thomson syndrome. Orphanet J Rare Dis 5: 2. doi: 10.1186/1750-1172-5-2 20113479

4. Siitonen HA, Kopra O, Kaariainen H, Haravuori H, Winter RM, et al. (2003) Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum Mol Genet 12: 2837–2844. 12952869

5. Simon T, Kohlhase J, Wilhelm C, Kochanek M, De Carolis B, et al. (2010) Multiple malignant diseases in a patient with Rothmund-Thomson syndrome with RECQL4 mutations: Case report and literature review. Am J Med Genet A 152A: 1575–1579. doi: 10.1002/ajmg.a.33427 20503338

6. Wang LL, Levy ML, Lewis RA, Chintagumpala MM, Lev D, et al. (2001) Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am J Med Genet 102: 11–17. 11471165

7. Wang LL, Gannavarapu A, Kozinetz CA, Levy ML, Lewis RA, et al. (2003) Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst 95: 669–674. 12734318

8. Chou AJ, Geller DS, Gorlick R (2008) Therapy for osteosarcoma: where do we go from here? Paediatr Drugs 10: 315–327. 18754698

9. Jaffe N, Carrasco H, Raymond K, Ayala A, Eftekhari F (2002) Can cure in patients with osteosarcoma be achieved exclusively with chemotherapy and abrogation of surgery? Cancer 95: 2202–2210. 12412175

10. Rajani R, Gibbs CP (2012) Treatment of Bone Tumors. Surg Pathol Clin 5: 301–318. 22328909

11. Mirabello L, Troisi RJ, Savage SA (2009) International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer 125: 229–234. doi: 10.1002/ijc.24320 19330840

12. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, et al. (2014) Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7: 104–112. doi: 10.1016/j.celrep.2014.03.003 24703847

13. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, et al. (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144: 27–40. doi: 10.1016/j.cell.2010.11.055 21215367

14. Berman SD, Calo E, Landman AS, Danielian PS, Miller ES, et al. (2008) Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci U S A 105: 11851–11856. doi: 10.1073/pnas.0805462105 18697945

15. Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, et al. (2006) Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 172: 909–921. 16533949

16. Lin PP, Pandey MK, Jin F, Raymond AK, Akiyama H, et al. (2009) Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis 30: 1789–1795. doi: 10.1093/carcin/bgp180 19635748

17. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, et al. (2008) Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 22: 1662–1676. doi: 10.1101/gad.1656808 18559481

18. Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, et al. (2014) Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci U S A 111: E5564–5573. doi: 10.1073/pnas.1419260111 25512523

19. Maire G, Yoshimoto M, Chilton-MacNeill S, Thorner PS, Zielenska M, et al. (2009) Recurrent RECQL4 imbalance and increased gene expression levels are associated with structural chromosomal instability in sporadic osteosarcoma. Neoplasia 11: 260–268, 263p following 268. 19242607

20. Ueda T, Healey JH, Huvos AG, Ladanyi M (1997) Amplification of the MYC Gene in Osteosarcoma Secondary to Paget's Disease of Bone. Sarcoma 1: 131–134. 18521214

21. Monnat RJ Jr. (2010) Human RECQ helicases: roles in DNA metabolism, mutagenesis and cancer biology. Semin Cancer Biol 20: 329–339. doi: 10.1016/j.semcancer.2010.10.002 20934517

22. Wang LL, Worley K, Gannavarapu A, Chintagumpala MM, Levy ML, et al. (2002) Intron-size constraint as a mutational mechanism in Rothmund-Thomson syndrome. Am J Hum Genet 71: 165–167. 12016592

23. Siitonen HA, Sotkasiira J, Biervliet M, Benmansour A, Capri Y, et al. (2009) The mutation spectrum in RECQL4 diseases. Eur J Hum Genet 17: 151–158. doi: 10.1038/ejhg.2008.154 18716613

24. Ichikawa K, Noda T, Furuichi Y (2002) [Preparation of the gene targeted knockout mice for human premature aging diseases, Werner syndrome, and Rothmund-Thomson syndrome caused by the mutation of DNA helicases]. Nippon Yakurigaku Zasshi 119: 219–226. 11979727

25. Hoki Y, Araki R, Fujimori A, Ohhata T, Koseki H, et al. (2003) Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum Mol Genet 12: 2293–2299. 12915449

26. Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, et al. (2005) Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum Mol Genet 14: 813–825. 15703196

27. Smeets MF, DeLuca E, Wall M, Quach JM, Chalk AM, et al. (2014) The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis. J Clin Invest 124: 3551–3565. doi: 10.1172/JCI75334 24960165

28. Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133: 3231–3244. 16854976

29. Lu Y, Xie Y, Zhang S, Dusevich V, Bonewald LF, et al. (2007) DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res 86: 320–325. 17384025

30. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, et al. (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1: 4. 11299042

31. Yang J, Murthy S, Winata T, Werner S, Abe M, et al. (2006) Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype. Biochem Biophys Res Commun 344: 346–352. 16600186

32. Davey RA, Clarke MV, Sastra S, Skinner JP, Chiang C, et al. (2012) Decreased body weight in young Osterix-Cre transgenic mice results in delayed cortical bone expansion and accrual. Transgenic Res 21: 885–893. doi: 10.1007/s11248-011-9581-z 22160436

33. Kim BT, Mosekilde L, Duan Y, Zhang XZ, Tornvig L, et al. (2003) The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res 18: 150–155. 12510817

34. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, et al. (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17: 1235–1241. doi: 10.1038/nm.2448 21909103

35. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, et al. (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17: 684–691. doi: 10.1038/nm.2388 21602802

36. Tonna S, Takyar FM, Vrahnas C, Crimeen-Irwin B, Ho PW, et al. (2014) EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis. FASEB J 28: 4482–4496. doi: 10.1096/fj.14-254300 24982128

37. Zhang C, Cho K, Huang Y, Lyons JP, Zhou X, et al. (2008) Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc Natl Acad Sci U S A 105: 6936–6941. doi: 10.1073/pnas.0710831105 18458345

38. Allan EH, Ho PW, Umezawa A, Hata J, Makishima F, et al. (2003) Differentiation potential of a mouse bone marrow stromal cell line. J Cell Biochem 90: 158–169. 12938165

39. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, et al. (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106: 3020–3027. 16037394

40. Van Vlasselaer P, Falla N, Snoeck H, Mathieu E (1994) Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin. Blood 84: 753–763. 7519072

41. Lu H, Fang EF, Sykora P, Kulikowicz T, Zhang Y, et al. (2014) Senescence induced by RECQL4 dysfunction contributes to Rothmund-Thomson syndrome features in mice. Cell Death Dis 5: e1226. doi: 10.1038/cddis.2014.168 24832598

42. De S, Kumari J, Mudgal R, Modi P, Gupta S, et al. (2012) RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J Cell Sci 125: 2509–2522. doi: 10.1242/jcs.101501 22357944

43. Mutsaers AJ, Ng AJ, Baker EK, Russell MR, Chalk AM, et al. (2013) Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage-restricted transgenic shRNA. Bone 55: 166–178. doi: 10.1016/j.bone.2013.02.016 23486187

44. Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, et al. (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10: 259–272. doi: 10.1016/j.stem.2012.02.003 22385654

45. Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P (2013) Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341: 893–896. doi: 10.1126/science.1241530 23907533

46. Abe T, Yoshimura A, Hosono Y, Tada S, Seki M, et al. (2011) The N-terminal region of RECQL4 lacking the helicase domain is both essential and sufficient for the viability of vertebrate cells. Role of the N-terminal region of RECQL4 in cells. Biochim Biophys Acta 1813: 473–479. doi: 10.1016/j.bbamcr.2011.01.001 21256165

47. Kohzaki M, Chiourea M, Versini G, Adachi N, Takeda S, et al. (2012) The helicase domain and C-terminus of human RecQL4 facilitate replication elongation on DNA templates damaged by ionizing radiation. Carcinogenesis 33: 1203–1210. doi: 10.1093/carcin/bgs149 22508716

48. Singh DK, Karmakar P, Aamann M, Schurman SH, May A, et al. (2010) The involvement of human RECQL4 in DNA double-strand break repair. Aging Cell 9: 358–371. doi: 10.1111/j.1474-9726.2010.00562.x 20222902

49. Gupta S, De S, Srivastava V, Hussain M, Kumari J, et al. (2014) RECQL4 and p53 potentiate the activity of polymerase gamma and maintain the integrity of the human mitochondrial genome. Carcinogenesis 35: 34–45. doi: 10.1093/carcin/bgt315 24067899

50. Lu L, Harutyunyan K, Jin W, Wu J, Yang T, et al. (In Press) RECQL4 Regulates p53 Function in vivo During Skeletogenesis. Journal of Bone and Mineral Research.

51. Lu L, Jin W, Liu H, Wang LL (2014) RECQ DNA helicases and osteosarcoma. Adv Exp Med Biol 804: 129–145. doi: 10.1007/978-3-319-04843-7_7 24924172

52. Kitao S, Lindor NM, Shiratori M, Furuichi Y, Shimamoto A (1999) Rothmund-thomson syndrome responsible gene, RECQL4: genomic structure and products. Genomics 61: 268–276. 10552928

53. Singbrant S, Russell MR, Jovic T, Liddicoat B, Izon DJ, et al. (2011) Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood 117: 5631–5642. doi: 10.1182/blood-2010-11-320564 21421837

54. Walsh NC, Reinwald S, Manning CA, Condon KW, Iwata K, et al. (2009) Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res 24: 1572–1585. doi: 10.1359/jbmr.090320 19338457

55. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH (2007) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129: 1081–1095. 17574022

56. Sims NA, Clement-Lacroix P, Da Ponte F, Bouali Y, Binart N, et al. (2000) Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest 106: 1095–1103. 11067862

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#