Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins
Intestinal homeostasis is ensured by a subtle balance between bacteria and host immunity. Gut epithelial barriers, such as the mucus layer in mammals and the peritrophic matrix in invertebrates, have a protective function for the host, as they are impermeable to invading intestinal microbes. Here we found that, in the fly Drosophila melanogaster, transglutaminase (TG), a molecular glue involved in protein-protein covalent bond formation, is essential for peritrophic matrix formation by converting the peritrophic protein drosocrystallin into a stable fiber-like structure and inhibition of pathogenic bacteria. Knockdown of the TG gene led to increased permeability of the peritrophic matrix and greatly increased the susceptibility to a toxic bacterial protease. TG contributes to form a stable fiber-like barrier on the peritrophic matrix and increase tolerance to pathogenic microorganisms.
Vyšlo v časopise:
Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins. PLoS Pathog 11(10): e32767. doi:10.1371/journal.ppat.1005244
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005244
Souhrn
Intestinal homeostasis is ensured by a subtle balance between bacteria and host immunity. Gut epithelial barriers, such as the mucus layer in mammals and the peritrophic matrix in invertebrates, have a protective function for the host, as they are impermeable to invading intestinal microbes. Here we found that, in the fly Drosophila melanogaster, transglutaminase (TG), a molecular glue involved in protein-protein covalent bond formation, is essential for peritrophic matrix formation by converting the peritrophic protein drosocrystallin into a stable fiber-like structure and inhibition of pathogenic bacteria. Knockdown of the TG gene led to increased permeability of the peritrophic matrix and greatly increased the susceptibility to a toxic bacterial protease. TG contributes to form a stable fiber-like barrier on the peritrophic matrix and increase tolerance to pathogenic microorganisms.
Zdroje
1. Nehme NT, Liegeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLOS Pathog 2007;3: e173. 18039029
2. Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLOS Pathog 2006;2: e56. 16789834
3. Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol 2007;25: 697–743. 17201680
4. Ha EM, Lee KA, Seo YY, Kim SH, Lim JH, Oh BH, et al. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in Drosophila gut. Nat Immunol 2009;10: 949–957. doi: 10.1038/ni.1765 19668222
5. Ha EM, Lee KA, Park SH, Kim SH, Nam HJ, Lee HY, et al. Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity. Dev Cell 2009;16: 386–397. doi: 10.1016/j.devcel.2008.12.015 19289084
6. Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 2013 May 9;153(4):797–811. doi: 10.1016/j.cell.2013.04.009 23663779
7. Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci USA 2011;108: 15966–15971. doi: 10.1073/pnas.1105994108 21896728
8. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 2009;5: 200–211. doi: 10.1016/j.chom.2009.01.003 19218090
9. Buchon N, Osman D, David FP, Fang HY, Boquete JP, Deplancke B, et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep 2013;3: 1725–1738. doi: 10.1016/j.celrep.2013.04.001 23643535
10. Shibata T, Sekihara S, Fujikawa T, Miyaji R, Maki K, Ishihara T, et al. Transglutaminase-catalyzed protein-protein cross-linking suppresses the activity of the NF-kappaB-like transcription factor relish. Sci Signal 2013;6: ra61. doi: 10.1126/scisignal.2003970 23882120
11. Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 2003;4: 140–156. 12563291
12. Makarova KS, Aravind L, Koonin EV. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci 1999;8: 1714–1719. 10452618
13. Shibata T, Ariki S, Shinzawa N, Miyaji R, Suyama H, Sako M, et al. Protein crosslinking by transglutaminase controls cuticle morphogenesis in Drosophila. PLOS One 2010;5: e13477. doi: 10.1371/journal.pone.0013477 20976106
14. Wang Z, Wilhelmsson C, Hyrsl P, Loof TG, Dobes P, Klupp M, et al. Pathogen entrapment by transglutaminase—a conserved early innate immune mechanism. PLOS Pathog 2010;6: e1000763. doi: 10.1371/journal.ppat.1000763 20169185
15. Loof TG, Morgelin M, Johansson L, Oehmcke S, Olin AI, Dickneite G, et al. Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 2011;118: 2589–2598. doi: 10.1182/blood-2011-02-337568 21613262
16. Lehane MJ. Peritrophic matrix structure and function. Annu Rev Entomol 1997;42: 525–550. 15012322
17. Terra WR. The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 2001;47: 47–61. 11376452
18. Janssens H, Gehring WJ. Isolation and characterization of drosocrystallin, a lens crystallin gene of Drosophila melanogaster. Dev Biol 1999;207: 204–214. 10049575
19. Komori N, Usukura J, Matsumoto H. Drosocrystallin, a major 52 kDa glycoprotein of the Drosophila melanogaster corneal lens. Purification, biochemical characterization, and subcellular localization. J Cell Sci 1992;102: 191–201. 1400628
20. Rebers JE, Riddiford LM. Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J Mol Biol 1988;203: 411–423. 2462055
21. Karouzou MV, Spyropoulos Y, Iconomidou VA, Cornman RS, Hamodrakas SJ, Willis JH. Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem Mol Biol 2007;37: 754–760. 17628275
22. Iijima M, Hashimoto T, Matsuda Y, Nagai T, Yamano Y, Ichi T, et al. Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. FEBS J 2005;272: 4774–4786. 16156796
23. Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, et al. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci USA 2005;102: 11414–11419. 16061818
24. Opota O, Vallet-Gely I, Vincentelli R, Kellenberger C, Iacovache I, Gonzalez MR, et al. Monalysin, a novel β-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLOS Pathog 2011;7: e1002259. doi: 10.1371/journal.ppat.1002259 21980286
25. Lindgren M, Riazi R, Lesch C, Wilhelmsson C, Theopold U, Dushay MS. Fondue and transglutaminase in the Drosophila larval clot. J Insect Physiol 2008;54: 586–592. doi: 10.1016/j.jinsphys.2007.12.008 18222466
26. Wang P, Li G, Granados RR. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem Mol Biol 2004;34: 215–227. 14871618
27. Fang S, Wang L, Guo W, Zhang X, Peng D, Luo C, et al. Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Appl Environ Microbiol 2009;75: 5237–5243. doi: 10.1128/AEM.00532-09 19542344
28. Wang P, Granados RR. Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J Biol Chem 1997;272: 16663–16669. 9195982
29. Matsuda Y, Osaki T, Hashii T, Koshiba T, Kawabata S. A cysteine-rich protein from an arthropod stabilizes clotting mesh and immobilizes bacteria at injury sites. J Biol Chem 2007;282: 33545–33552. 17855345
30. Osaki T, Okino N, Tokunaga F, Iwanaga S, Kawabata S. Proline-rich cell surface antigens of horseshoe crab hemocytes are substrates for protein cross-linking with a clotting protein coagulin. J Biol Chem 2002;277: 40084–40090. 12189150
31. Guzzo J, Murgier M, Filloux A, Lazdunski A. Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coli. J Bacteriol 1990;172: 942–948. 2153662
32. Duong F, Lazdunski A, Cami B, Murgier M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene 1992;121: 47–54. 1427098
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Chronobiomics: The Biological Clock as a New Principle in Host–Microbial Interactions
- Interferon-γ: The Jekyll and Hyde of Malaria
- Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins
- Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes