#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps


The ubiquitous mold A. fumigatus is isolated in over 80% of all patients with invasive aspergillosis (IA). A. nidulans is a relatively non-pathogenic species that rarely causes IA except in patients with chronic granulomatous disease (CGD), a hereditary disease characterized by impaired neutrophil function due to mutations in the NADPH oxidase complex. Here, we demonstrate that one factor underlying the differences in the intrinsic virulence between A. fumigatus and A. nidulans is the amount of the exopolysaccharide galactosaminogalactan that is associated with the cell wall of these species. A. fumigatus produces higher amounts of cell wall-associated galactosaminogalactan and is more resistant than A. nidulans to neutrophil killing by NADPH-oxidase dependent extracellular traps (NETs). Increasing cell wall-associated galactosaminogalactan in A. nidulans enhanced resistance to NETs and increased the virulence of this species to the same level as A. fumigatus in mice with intact NET formation. Collectively, these data suggest that A. nidulans is more sensitive than A. fumigatus to NADPH-oxidase dependent NETosis due to lower levels of cell wall-associated GAG.


Vyšlo v časopise: The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathog 11(10): e32767. doi:10.1371/journal.ppat.1005187
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005187

Souhrn

The ubiquitous mold A. fumigatus is isolated in over 80% of all patients with invasive aspergillosis (IA). A. nidulans is a relatively non-pathogenic species that rarely causes IA except in patients with chronic granulomatous disease (CGD), a hereditary disease characterized by impaired neutrophil function due to mutations in the NADPH oxidase complex. Here, we demonstrate that one factor underlying the differences in the intrinsic virulence between A. fumigatus and A. nidulans is the amount of the exopolysaccharide galactosaminogalactan that is associated with the cell wall of these species. A. fumigatus produces higher amounts of cell wall-associated galactosaminogalactan and is more resistant than A. nidulans to neutrophil killing by NADPH-oxidase dependent extracellular traps (NETs). Increasing cell wall-associated galactosaminogalactan in A. nidulans enhanced resistance to NETs and increased the virulence of this species to the same level as A. fumigatus in mice with intact NET formation. Collectively, these data suggest that A. nidulans is more sensitive than A. fumigatus to NADPH-oxidase dependent NETosis due to lower levels of cell wall-associated GAG.


Zdroje

1. Garcia-Vidal C, Upton A, Kirby KA, Marr KA (2008) Epidemiology of invasive mold infections in allogeneic stem cell transplant recipients: biological risk factors for infection according to time after transplantation. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 47: 1041–1050.

2. Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, et al. (2007) The current status of species recognition and identification in Aspergillus. Studies in Mycology 59: 1–10. doi: 10.3114/sim.2007.59.01 18490947

3. Lucas GM, Tucker P, Merz WG (1999) Primary Cutaneous Aspergillus nidulans Infection Associated with a Hickman Catheter in a Patient with Neutropenia. Clinical Infectious Diseases 29: 1594–1596. 10585834

4. Henriet SS, Verweij PE, Warris A (2012) Aspergillus nidulans and chronic granulomatous disease: a unique host-pathogen interaction. J Infect Dis 206: 1128–1137. doi: 10.1093/infdis/jis473 22829648

5. Song E, Jaishankar GB, Saleh H, Jithpratuck W, Sahni R, et al. (2011) Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clin Mol Allergy 9: 10. doi: 10.1186/1476-7961-9-10 21624140

6. Henriet S, Verweij PE, Holland SM, Warris A (2013) Invasive fungal infections in patients with chronic granulomatous disease. Adv Exp Med Biol 764: 27–55. 23654055

7. Abad A, Fernandez-Molina JV, Bikandi J, Ramirez A, Margareto J, et al. (2010) What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 27: 155–182. doi: 10.1016/j.riam.2010.10.003 20974273

8. Sales-Campos H, Tonani L, Cardoso CR, Kress MR (2013) The immune interplay between the host and the pathogen in Aspergillus fumigatus lung infection. Biomed Res Int 2013: 693023. doi: 10.1155/2013/693023 23984400

9. Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, et al. (2011) Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog. pp. e1002372. doi: 10.1371/journal.ppat.1002372 22102815

10. Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD, et al. (2013) Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System. PLoS pathogens. doi: 10.1371/journal.ppat.1003575 23990787

11. Lee MJ, Gravelat FN, Cerone RP, Baptista SD, Campoli PV, et al. (2014) Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides. J Biol Chem 289: 1243–1256. doi: 10.1074/jbc.M113.522516 24257745

12. Gravelat FN, Ejzykowicz DE, Chiang LY, Chabot JC, Urb M, et al. (2010) Aspergillus fumigatus MedA governs adherence, host cell interactions and virulence. Cell Microbiol 12: 473–488. doi: 10.1111/j.1462-5822.2009.01408.x 19889083

13. Robinet P, Baychelier F, Fontaine T, Picard C, Debre P, et al. (2014) A Polysaccharide Virulence Factor of a Human Fungal Pathogen Induces Neutrophil Apoptosis via NK Cells. J Immunol. doi: 10.4049/jimmunol.1303180 24790151

14. Gresnigt MS, Bozza S, Becker KL, Joosten LA, Abdollahi-Roodsaz S, et al. (2014) A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of Interleukin-1 receptor antagonist. PLoS Pathog 10: e1003936. doi: 10.1371/journal.ppat.1003936 24603878

15. Ruperez P, Leal JA (1981) Extracellular galactosaminogalactan from Aspergillus parasiticus. Transactions of the British Mycological Society 77: 621–625.

16. Bardalaye PC, Nordin JH (1976) Galactosaminogalactan from cell walls of Aspergillus niger. Journal of bacteriology 125: 655–669. 173713

17. Gorin PAJ, Eveleigh DE (1970) Extracellular 2-acetamido-2-deoxy-D-galacto-D-galactan from Aspergillus nidulans. Biochemistry 9: 5023–5027. 5480165

18. Leal JA, Ruperez P (1978) Extracellular polysaccharide production by Aspergillus nidulans. Transactions of the British Mycological Society 70: 115–120.

19. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology (Reading, England) 153: 1677–1692.

20. Rao VS, Lam K, Qasba PK (1998) Three dimensional structure of the soybean agglutinin Gal/GalNAc complexes by homology modeling. Journal of biomolecular structure & dynamics 15: 853–860.9619508

21. Dam TK, Gerken TA, Cavada BS, Nascimento KS, Moura TR, et al. (2007) Binding studies of alpha-GalNAc-specific lectins to the alpha-GalNAc (Tn-antigen) form of porcine submaxillary mucin and its smaller fragments. The Journal of biological chemistry 282: 28256–28263. 17652089

22. Paul BC, El-Ganiny AM, Abbas M, Kaminskyj SGW, Dahms TES (2011) Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy. Eukaryotic cell 10: 646–653. doi: 10.1128/EC.00304-10 21335527

23. Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, et al. (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416: 291–297. 11907569

24. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23: 197–223. 15771570

25. Segal BH, Han W, Bushey JJ, Joo M, Bhatti Z, et al. (2010) NADPH oxidase limits innate immune responses in the lungs in mice. PLoS One 5: e9631. doi: 10.1371/journal.pone.0009631 20300512

26. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, et al. (2009) Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114: 2619–2622. doi: 10.1182/blood-2009-05-221606 19541821

27. Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S, et al. (2010) Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog 6: e1000873. doi: 10.1371/journal.ppat.1000873 20442864

28. Rohm M, Grimm MJ, D'Auria AC, Almyroudis NG, Segal BH, et al. (2014) NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect Immun 82: 1766–1777. doi: 10.1128/IAI.00096-14 24549323

29. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, et al. (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5: e1000639. doi: 10.1371/journal.ppat.1000639 19876394

30. Lamarre C, Beau R, Balloy V, Fontaine T, Wong Sak Hoi J, et al. (2009) Galactofuranose attenuates cellular adhesion of Aspergillus fumigatus. Cellular microbiology 11: 1612–1623. doi: 10.1111/j.1462-5822.2009.01352.x 19563461

31. Kwon-Chung KJ, Sugui JA (2013) Aspergillus fumigatus—what makes the species a ubiquitous human fungal pathogen? PLoS Pathog 9: e1003743 doi: 10.1371/journal.ppat.1003743 24348239

32. Schaffner A (1985) Therapeutic concentrations of glucocorticoids suppress the antimicrobial activity of human macrophages without impairing their responsiveness to gamma interferon. J Clin Invest 76: 1755–1764. 3932471

33. Brummer E, Maqbool A, Stevens DA (2001) In vivo GM-CSF prevents dexamethasone suppression of killing of Aspergillus fumigatus conidia by bronchoalveolar macrophages. J Leukoc Biol 70: 868–872. 11739548

34. Lamarre C, Beau R, Balloy V, Fontaine T, Wong Sak Hoi J, et al. (2009) Galactofuranose attenuates cellular adhesion of Aspergillus fumigatus. Cellular microbiology 11: 1612–1623. doi: 10.1111/j.1462-5822.2009.01352.x 19563461

35. Henriet SS, Hermans PW, Verweij PE, Simonetti E, Holland SM, et al. (2011) Human leukocytes kill Aspergillus nidulans by reactive oxygen species-independent mechanisms. Infect Immun 79:: 767–773. doi: 10.1128/IAI.00921-10 21078850

36. Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, et al. (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72: 7107–7114. 15557634

37. Liu HZ M.; Zhu S. (2011) Persistence of Antibiotic Resistance and Capsule in E. coli B23 after Removal from Sublethal Kanamycin Treatment JEMI 15: 43–46.

38. Bales PM, Renke EM, May SL, Shen Y, Nelson DC (2013) Purification and Characterization of Biofilm-Associated EPS Exopolysaccharides from ESKAPE Organisms and Other Pathogens. PLoS One 8: e67950. 23805330

39. Lee MJ, Geller AM, Gravelat FN, Liu H, Snarr BD, et al. Deacetylation of Aspergillus fumigatu galactosaminogalactan is required for adherence and virulence; 2014; Madrid, Spain.

40. Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, et al. (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279: 54881–54886. 15501828

41. Sheppard DC, Doedt T, Chiang LY, Kim HS, Chen D, et al. (2005) The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol Biol Cell 16: 5866–5879. 16207816

42. Campoli P, Al Abdallah Q, Robitaille R, Solis NV, Fielhaber JA, et al. (2011) Concentration of antifungal agents within host cell membranes: a new paradigm governing the efficacy of prophylaxis. Antimicrob Agents Chemother 55: 5732–5739. doi: 10.1128/AAC.00637-11 21930891

43. Twumasi-Boateng K, Yu Y, Chen D, Gravelat FN, Nierman WC, et al. (2009) Transcriptional profiling identifies a role for BrlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolite clusters in Aspergillus fumigatus. Eukaryot Cell 8: 104–115. doi: 10.1128/EC.00265-08 19028996

44. Choe SI, Gravelat FN, Al Abdallah Q, Lee MJ, Gibbs BF, et al. (2012) Role of Aspergillus niger acrA in arsenic resistance and its use as the basis for an arsenic biosensor. Appl Environ Microbiol 78: 3855–3863. doi: 10.1128/AEM.07771-11 22467499

45. Gravelat FN, Askew DS, Sheppard DC (2012) Targeted gene deletion in Aspergillus fumigatus using the hygromycin-resistance split-marker approach. Methods in molecular biology (Clifton, NJ) 845: 119–130.

46. Sheppard DC, Rieg G, Chiang LY, Filler SG, Edwards JE Jr., et al. (2004) Novel inhalational murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 48: 1908–1911. 15105158

47. Vinh DC, Sugui JA, Hsu AP, Freeman AF, Holland SM (2010) Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J Allergy Clin Immunol 125: 1389–1390. doi: 10.1016/j.jaci.2010.01.047 20392475

48. Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr., Mowat E, et al. (2008) A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3: 1494–1500. doi: 10.1038/nport.2008.141 18772877

49. Sheppard DC, Rieg G, Chiang LY, Filler SG, Edwards JE Jr., et al. (2004) Novel inhalational murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 48: 1908–1911. 15105158

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#