#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma


Burkitt lymphoma is endemic in sub-Saharan Africa and affects primarily children of age 4–7 years. Historically, it was one of the first tumors associated with a virus (EBV) and bearing a translocation involving an oncogene, i.e. MYC. There are three distinct clinical variants of Burkitt lymphoma according to the World Health Organization: sporadic, endemic and immunodeficiency-related. Although there has been some recent work on the molecular characterization of sporadic Burkitt lymphomas, little is known about the pathogenesis of endemic cases. In this work, we analyzed 20 samples of RNASeq from Burkitt lymphoma collected in Lacor Hospital (Uganda, Africa) and validated in an extension panel of 73 samples from Uganda and Kenya. We identify the presence in the adjacent non-neoplastic tissue of other herpesviridae family members in 53% of the cases, namely cytomegalovirus (CMV) and Kaposi sarcoma herpesvirus (KSHV). We also demonstrate expression of EBV lytic genes in primary tumor samples and find an inverse association between EBV lytic expression and TCF3 activity. When studying the mutational profile of endemic Burkitt tumors, we find recurrent alterations in genes rarely mutated in sporadic Burkitt lymphomas, i.e. ARID1A, CCNF and RHOA, and lower numbers of mutations in genes previously reported to be commonly mutated in sporadic cases, i.e. MYC, ID3, TCF3, TP53. Together, these results illustrate a distinct genetic and viral profile of endemic Burkitt lymphoma, suggesting a dual mechanism of transformation (mutation versus virus driven in sBL and eBL respectively).


Vyšlo v časopise: Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma. PLoS Pathog 11(10): e32767. doi:10.1371/journal.ppat.1005158
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005158

Souhrn

Burkitt lymphoma is endemic in sub-Saharan Africa and affects primarily children of age 4–7 years. Historically, it was one of the first tumors associated with a virus (EBV) and bearing a translocation involving an oncogene, i.e. MYC. There are three distinct clinical variants of Burkitt lymphoma according to the World Health Organization: sporadic, endemic and immunodeficiency-related. Although there has been some recent work on the molecular characterization of sporadic Burkitt lymphomas, little is known about the pathogenesis of endemic cases. In this work, we analyzed 20 samples of RNASeq from Burkitt lymphoma collected in Lacor Hospital (Uganda, Africa) and validated in an extension panel of 73 samples from Uganda and Kenya. We identify the presence in the adjacent non-neoplastic tissue of other herpesviridae family members in 53% of the cases, namely cytomegalovirus (CMV) and Kaposi sarcoma herpesvirus (KSHV). We also demonstrate expression of EBV lytic genes in primary tumor samples and find an inverse association between EBV lytic expression and TCF3 activity. When studying the mutational profile of endemic Burkitt tumors, we find recurrent alterations in genes rarely mutated in sporadic Burkitt lymphomas, i.e. ARID1A, CCNF and RHOA, and lower numbers of mutations in genes previously reported to be commonly mutated in sporadic cases, i.e. MYC, ID3, TCF3, TP53. Together, these results illustrate a distinct genetic and viral profile of endemic Burkitt lymphoma, suggesting a dual mechanism of transformation (mutation versus virus driven in sBL and eBL respectively).


Zdroje

1. World Health O (2008) Report of the ninth meeting of the WHO Technical Advisory Group on Leprosy Control: Cairo, Egypt, 6–7 March 2008. Lepr Rev 79: 452–470. 19274996

2. Ogwang MD, Bhatia K, Biggar RJ, Mbulaiteye SM (2008) Incidence and geographic distribution of endemic Burkitt lymphoma in northern Uganda revisited. Int J Cancer 123: 2658–2663. doi: 10.1002/ijc.23800 18767045

3. van den Bosch C (2012) A Role for RNA Viruses in the Pathogenesis of Burkitt's Lymphoma: The Need for Reappraisal. Advances in hematology 2012: 494758. doi: 10.1155/2012/494758 22550493

4. Thorley-Lawson DA, Hawkins JB, Tracy SI, Shapiro M (2013) The pathogenesis of Epstein-Barr virus persistent infection. Curr Opin Virol 3: 227–232. doi: 10.1016/j.coviro.2013.04.005 23683686

5. Kelly G, Bell A, Rickinson A (2002) Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nature medicine 8: 1098–1104. 12219084

6. Kelly GL, Stylianou J, Rasaiyaah J, Wei W, Thomas W, et al. (2013) Different patterns of Epstein-Barr virus latency in endemic Burkitt lymphoma (BL) lead to distinct variants within the BL-associated gene expression signature. Journal of virology 87: 2882–2894. doi: 10.1128/JVI.03003-12 23269792

7. Kelly GL, Milner AE, Baldwin GS, Bell AI, Rickinson AB (2006) Three restricted forms of Epstein-Barr virus latency counteracting apoptosis in c-myc-expressing Burkitt lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America 103: 14935–14940. 17001014

8. Bell AI, Groves K, Kelly GL, Croom-Carter D, Hui E, et al. (2006) Analysis of Epstein-Barr virus latent gene expression in endemic Burkitt's lymphoma and nasopharyngeal carcinoma tumour cells by using quantitative real-time PCR assays. The Journal of general virology 87: 2885–2890. 16963746

9. Niedobitek G, Agathanggelou A, Rowe M, Jones EL, Jones DB, et al. (1995) Heterogeneous expression of Epstein-Barr virus latent proteins in endemic Burkitt's lymphoma. Blood 86: 659–665. 7605996

10. Arvey A, Ojesina AI, Pedamallu CS, Ballon G, Jung J, et al. (2015) The tumor virus landscape of AIDS-related lymphomas. Blood 125: e14–e22. doi: 10.1182/blood-2014-11-599951 25827832

11. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, et al. (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 79: 7824–7827. 6961453

12. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, et al. (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318: 533–538. 3906410

13. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, et al. (2006) Molecular diagnosis of Burkitt's lymphoma. N Engl J Med 354: 2431–2442. 16760443

14. Neri A, Barriga F, Knowles DM, Magrath IT, Dalla-Favera R (1988) Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc Natl Acad Sci U S A 85: 2748–2752. 2833750

15. Cario G, Stadt UZ, Reiter A, Welte K, Sykora KW (2000) Variant translocations in sporadic Burkitt's lymphoma detected in fresh tumour material: analysis of three cases. Br J Haematol 110: 537–546. 10997962

16. Sander S, Calado DP, Srinivasan L, Kochert K, Zhang B, et al. (2012) Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell 22: 167–179. doi: 10.1016/j.ccr.2012.06.012 22897848

17. Piccaluga PP, De Falco G, Kustagi M, Gazzola A, Agostinelli C, et al. (2011) Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes. Blood 117: 3596–3608. doi: 10.1182/blood-2010-08-301556 21245480

18. Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM (2014) Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med 4. doi: 10.1101/cshperspect.a014282 24492847

19. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, et al. (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490: 116–120. doi: 10.1038/nature11378 22885699

20. Giulino-Roth L, Wang K, MacDonald TY, Mathew S, Tam Y, et al. (2012) Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood 120: 5181–5184. doi: 10.1182/blood-2012-06-437624 23091298

21. Naresh KN, Raphael M, Ayers L, Hurwitz N, Calbi V, et al. (2011) Lymphomas in sub-Saharan Africa—what can we learn and how can we help in improving diagnosis, managing patients and fostering translational research? Br J Haematol 154: 696–703. doi: 10.1111/j.1365-2141.2011.08772.x 21707579

22. Gutierrez MI, Bhatia K, Barriga F, Diez B, Muriel FS, et al. (1992) Molecular epidemiology of Burkitt's lymphoma from South America: differences in breakpoint location and Epstein-Barr virus association from tumors in other world regions. Blood 79: 3261–3266. 1317726

23. Kelly GL, Long HM, Stylianou J, Thomas WA, Leese A, et al. (2009) An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 link. PLoS pathogens 5: e1000341. doi: 10.1371/journal.ppat.1000341 19283066

24. Tierney RJ, Shannon-Lowe CD, Fitzsimmons L, Bell AI, Rowe M (2015) Unexpected patterns of Epstein-Barr virus transcription revealed by a high throughput PCR array for absolute quantification of viral mRNA. Virology 474: 117–130. doi: 10.1016/j.virol.2014.10.030 25463610

25. Oudejans JJ, van den Brule AJ, Jiwa NM, de Bruin PC, Ossenkoppele GJ, et al. (1995) BHRF1, the Epstein-Barr virus (EBV) homologue of the BCL-2 protooncogene, is transcribed in EBV-associated B-cell lymphomas and in reactive lymphocytes. Blood 86: 1893–1902. 7655018

26. Lear AL, Rowe M, Kurilla MG, Lee S, Henderson S, et al. (1992) The Epstein-Barr virus (EBV) nuclear antigen 1 BamHI F promoter is activated on entry of EBV-transformed B cells into the lytic cycle. J Virol 66: 7461–7468. 1331531

27. Vladimir Trifonov LP, Enrico Tiacci, Brunangelo Falini, Raul Rabadan (2013) Statistical Algorithm for Variant Frequency Identification. BMC Systems Biology In Press.

28. Rohde M, Richter J, Schlesner M, Betts MJ, Claviez A, et al. (2014) Recurrent RHOA mutations in pediatric Burkitt lymphoma treated according to the NHL-BFM protocols. Genes Chromosomes Cancer 53: 911–916. doi: 10.1002/gcc.22202 25044415

29. Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, et al. (2006) Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res 66: 7999–8006. 16912175

30. Bultema R, Longnecker R, Swanson-Mungerson M (2009) Epstein-Barr virus LMP2A accelerates MYC-induced lymphomagenesis. Oncogene 28: 1471–1476. doi: 10.1038/onc.2008.492 19182823

31. Bouchard C, Staller P, Eilers M (1998) Control of cell proliferation by Myc. Trends in Cell Biology 8: 202–206. 9695840

32. Portis T, Longnecker R (2004) Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene 23: 8619–8628. 15361852

33. Scholle F, Bendt KM, Raab-Traub N (2000) Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J Virol 74: 10681–10689. 11044112

34. Swart R, Ruf IK, Sample J, Longnecker R (2000) Latent membrane protein 2A-mediated effects on the phosphatidylinositol 3-Kinase/Akt pathway. J Virol 74: 10838–10845. 11044134

35. Fukuda M, Longnecker R (2004) Latent membrane protein 2A inhibits transforming growth factor-beta 1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. J Virol 78: 1697–1705. 14747535

36. Brennan P, Mehl AM, Jones M, Rowe M (2002) Phosphatidylinositol 3-kinase is essential for the proliferation of lymphoblastoid cells. Oncogene 21: 1263–1271. 11850846

37. Hatton OL, Harris-Arnold A, Schaffert S, Krams SM, Martinez OM (2014) The interplay between Epstein-Barr virus and B lymphocytes: implications for infection, immunity, and disease. Immunologic research 58: 268–276. doi: 10.1007/s12026-014-8496-1 24619311

38. Chene A, Donati D, Orem J, Mbidde ER, Kironde F, et al. (2009) Endemic Burkitt's lymphoma as a polymicrobial disease: new insights on the interaction between Plasmodium falciparum and Epstein-Barr virus. Seminars in cancer biology 19: 411–420. doi: 10.1016/j.semcancer.2009.10.002 19897039

39. Moormann AM, Snider CJ, Chelimo K (2011) The company malaria keeps: how co-infection with Epstein-Barr virus leads to endemic Burkitt lymphoma. Current opinion in infectious diseases 24: 435–441. doi: 10.1097/QCO.0b013e328349ac4f 21885920

40. Dolcetti R, Dal Col J, Martorelli D, Carbone A, Klein E (2013) Interplay among viral antigens, cellular pathways and tumor microenvironment in the pathogenesis of EBV-driven lymphomas. Seminars in cancer biology 23: 441–456. doi: 10.1016/j.semcancer.2013.07.005 23917255

41. Biryahwaho B, Dollard SC, Pfeiffer RM, Shebl FM, Munuo S, et al. (2010) Sex and geographic patterns of human herpesvirus 8 infection in a nationally representative population-based sample in Uganda. J Infect Dis 202: 1347–1353. doi: 10.1086/656525 20863232

42. Kenney SC, Mertz JE (2014) Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol 26: 60–68. doi: 10.1016/j.semcancer.2014.01.002 24457012

43. Chene A, Donati D, Guerreiro-Cacais AO, Levitsky V, Chen Q, et al. (2007) A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog 3: e80. 17559303

44. Lin Z, Wang X, Strong MJ, Concha M, Baddoo M, et al. (2013) Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol 87: 1172–1182. doi: 10.1128/JVI.02517-12 23152513

45. Fish K, Chen J, Longnecker R (2014) Epstein-Barr virus latent membrane protein 2A enhances MYC-driven cell cycle progression in a mouse model of B lymphoma. Blood 123: 530–540. doi: 10.1182/blood-2013-07-517649 24174629

46. Dittmer DP (2014) Not like a wrecking ball: EBV fine-tunes MYC lymphomagenesis. Blood 123: 460–461. doi: 10.1182/blood-2013-11-537076 24458272

47. Sander S, Calado DP, Srinivasan L, Kochert K, Zhang BC, et al. (2012) Synergy between PI3K Signaling and MYC in Burkitt Lymphomagenesis. Cancer Cell 22: 167–179. doi: 10.1016/j.ccr.2012.06.012 22897848

48. Kenney SC, Mertz JE (2014) Regulation of the latent-lytic switch in Epstein-Barr virus. Seminars in cancer biology 26: 60–68. doi: 10.1016/j.semcancer.2014.01.002 24457012

49. Sivachandran N, Wang X, Frappier L (2012) Functions of the Epstein-Barr virus EBNA1 protein in viral reactivation and lytic infection. Journal of virology 86: 6146–6158. doi: 10.1128/JVI.00013-12 22491455

50. Xue SA, Labrecque LG, Lu QL, Ong SK, Lampert IA, et al. (2002) Promiscuous expression of Epstein-Barr virus genes in Burkitt's lymphoma from the central African country Malawi. International journal of cancer Journal international du cancer 99: 635–643. 12115495

51. Li Y, Webster-Cyriaque J, Tomlinson CC, Yohe M, Kenney S (2004) Fatty acid synthase expression is induced by the Epstein-Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. Journal of virology 78: 4197–4206. 15047835

52. Ambrosio MR, Piccaluga PP, Ponzoni M, Rocca BJ, Malagnino V, et al. (2012) The alteration of lipid metabolism in Burkitt lymphoma identifies a novel marker: adipophilin. PloS one 7: e44315. doi: 10.1371/journal.pone.0044315 22952953

53. Jochum S, Moosmann A, Lang S, Hammerschmidt W, Zeidler R (2012) The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS pathogens 8: e1002704. doi: 10.1371/journal.ppat.1002704 22615564

54. Jang BG, Jung EJ, Kim WH (2011) Expression of BamHI-A Rightward Transcripts in Epstein-Barr Virus-Associated Gastric Cancers. Cancer research and treatment: official journal of Korean Cancer Association 43: 250–254.

55. O'Grady T, Cao S, Strong MJ, Concha M, Wang X, et al. (2014) Global bidirectional transcription of the Epstein-Barr virus genome during reactivation. Journal of virology 88: 1604–1616. doi: 10.1128/JVI.02989-13 24257595

56. Vereide DT, Sugden B (2011) Lymphomas differ in their dependence on Epstein-Barr virus. Blood 117: 1977–1985. doi: 10.1182/blood-2010-05-285791 21088132

57. Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, et al. (2012) Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci U S A 109: E252–259. doi: 10.1073/pnas.1114817109 22233809

58. Trifonov V, Pasqualucci L, Dalla Favera R, Rabadan R (2013) MutComFocal: an integrative approach to identifying recurrent and focal genomic alterations in tumor samples. BMC systems biology 7: 25. doi: 10.1186/1752-0509-7-25 23531283

59. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, et al. (2011) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nature genetics 43: 1219–1223. doi: 10.1038/ng.982 22037554

60. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, et al. (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. The New England journal of medicine 363: 1532–1543. doi: 10.1056/NEJMoa1008433 20942669

61. Abe H, Maeda D, Hino R, Otake Y, Isogai M, et al. (2012) ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein-Barr virus infection and microsatellite instability. Virchows Arch 461: 367–377. doi: 10.1007/s00428-012-1303-2 22915242

62. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, et al. (2011) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 43: 1219–1223. doi: 10.1038/ng.982 22037554

63. Gulley ML (2015) Genomic assays for Epstein-Barr virus-positive gastric adenocarcinoma. Exp Mol Med 47: e134. doi: 10.1038/emm.2014.93 25613731

64. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, et al. (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet 46: 573–582. doi: 10.1038/ng.2983 24816253

65. Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, et al. (2014) Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46: 166–170. doi: 10.1038/ng.2873 24413734

66. Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, et al. (2014) Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46: 171–175. doi: 10.1038/ng.2872 24413737

67. Yoo HY, Sung MK, Lee SH, Kim S, Lee H, et al. (2014) A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 46: 371–375. doi: 10.1038/ng.2916 24584070

68. Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, et al. (2014) Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet 46: 583–587. doi: 10.1038/ng.2984 24816255

69. D'Angiolella V, Esencay M, Pagano M (2013) A cyclin without cyclin-dependent kinases: cyclin F controls genome stability through ubiquitin-mediated proteolysis. Trends Cell Biol 23: 135–140. doi: 10.1016/j.tcb.2012.10.011 23182110

70. D'Angiolella V, Donato V, Vijayakumar S, Saraf A, Florens L, et al. (2010) SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 466: 138–142. doi: 10.1038/nature09140 20596027

71. D'Angiolella V, Donato V, Forrester FM, Jeong YT, Pellacani C, et al. (2012) Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149: 1023–1034. doi: 10.1016/j.cell.2012.03.043 22632967

72. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, et al. (2011) BRAF mutations in hairy-cell leukemia. The New England journal of medicine 364: 2305–2315. doi: 10.1056/NEJMoa1014209 21663470

73. Trifonov V, Pasqualucci L, Tiacci E, Falini B, Rabadan R (2013) SAVI: a statistical algorithm for variant frequency identification. BMC systems biology 7 Suppl 2: S2. doi: 10.1186/1752-0509-7-S2-S2 24564980

74. Love C, Sun Z, Jima D, Li G, Zhang J, et al. (2012) The genetic landscape of mutations in Burkitt lymphoma. Nat Genet 44: 1321–1325. doi: 10.1038/ng.2468 23143597

75. Richter J, Schlesner M, Hoffmann S, Kreuz M, Leich E, et al. (2012) Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet 44: 1316–1320. doi: 10.1038/ng.2469 23143595

76. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. doi: 10.1038/nmeth.1923 22388286

77. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. 2231712

78. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, et al. (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24: 1757–1764. doi: 10.1093/bioinformatics/btn322 18567917

79. Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences 131: 281–285. doi: 10.1007/s12064-012-0162-3 22872506

80. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111. doi: 10.1093/bioinformatics/btp120 19289445

81. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511–515. doi: 10.1038/nbt.1621 20436464

82. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550. 16199517

83. Pozo F, Tenorio A (1999) Detection and typing of lymphotropic herpesviruses by multiplex polymerase chain reaction. J Virol Methods 79: 9–19. 10328531

84. Laurentino RV, Lopes IG, Azevedo VN, Machado LF, Moreira MR, et al. (2005) Molecular characterization of human T-cell lymphotropic virus coinfecting human immunodeficiency virus 1 infected patients in the Amazon region of Brazil. Mem Inst Oswaldo Cruz 100: 371–376. 16113884

85. Pellett PE, Spira TJ, Bagasra O, Boshoff C, Corey L, et al. (1999) Multicenter comparison of PCR assays for detection of human herpesvirus 8 DNA in semen. J Clin Microbiol 37: 1298–1301. 10203474

86. Qiu J, Smith P, Leahy L, Thorley-Lawson DA (2015) The Epstein-Barr virus encoded BART miRNAs potentiate tumor growth in vivo. PLoS Pathog 11: e1004561. doi: 10.1371/journal.ppat.1004561 25590614

87. Bell AI, Groves K, Kelly GL, Croom-Carter D, Hui E, et al. (2006) Analysis of Epstein-Barr virus latent gene expression in endemic Burkitt's lymphoma and nasopharyngeal carcinoma tumour cells by using quantitative real-time PCR assays. J Gen Virol 87: 2885–2890. 16963746

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#