#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Novel Antiviral Target Structure Involved in the RNA Binding, Dimerization, and Nuclear Export Functions of the Influenza A Virus Nucleoprotein


Influenza A virus nucleoprotein (NP) is a highly conserved multifunctional protein that plays an essential role in infection by all subtypes of influenza A virus, making it an attractive target for new antiviral drugs. NP regulates viral polymerase activity and transport of the viral genome into/from the host cell nucleus by forming the viral ribonucleoprotein complex (vRNP). Because NP regulates replication and transcription of the viral genome in addition to its role in nuclear export (all of which are essential for the production of viral progeny), it is a promising drug target. Here, we used the antiviral compound RK424 to identify a novel pocket structure within NP. This structure encompassed three different functional domains that are involved in the above-mentioned replication steps. RK424 inhibits viral genome replication/transcription and nuclear export of NP by destabilizing the NP oligomer and inhibiting the binding of chromosome region maintenance 1 (CRM1) to NP via nuclear export signal (NES) 3, which is located in close proximity to the NP pocket. Taken together, these findings suggest that this small NP pocket is a novel antiviral target.


Vyšlo v časopise: A Novel Antiviral Target Structure Involved in the RNA Binding, Dimerization, and Nuclear Export Functions of the Influenza A Virus Nucleoprotein. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1005062
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005062

Souhrn

Influenza A virus nucleoprotein (NP) is a highly conserved multifunctional protein that plays an essential role in infection by all subtypes of influenza A virus, making it an attractive target for new antiviral drugs. NP regulates viral polymerase activity and transport of the viral genome into/from the host cell nucleus by forming the viral ribonucleoprotein complex (vRNP). Because NP regulates replication and transcription of the viral genome in addition to its role in nuclear export (all of which are essential for the production of viral progeny), it is a promising drug target. Here, we used the antiviral compound RK424 to identify a novel pocket structure within NP. This structure encompassed three different functional domains that are involved in the above-mentioned replication steps. RK424 inhibits viral genome replication/transcription and nuclear export of NP by destabilizing the NP oligomer and inhibiting the binding of chromosome region maintenance 1 (CRM1) to NP via nuclear export signal (NES) 3, which is located in close proximity to the NP pocket. Taken together, these findings suggest that this small NP pocket is a novel antiviral target.


Zdroje

1. Taubenberger JK, Kash JC (2010) Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7: 440–451. doi: 10.1016/j.chom.2010.05.009 20542248

2. Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH (1985) The molecular basis of the specific anti-influenza action of Amantadine. EMBO J 4: 3021–3024. 4065098

3. Moscona A (2008) Medical management of influenza infection. Annu Rev Med 59: 397–413. 17939760

4. Bright RA, Shay DK, Shu B, Cox NJ, Klimov AI (2006) Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. JAMA 295: 891–894. 16456087

5. Hurt AC, Ernest J, Deng YM, Iannello P, Besselaar TG, et al. (2009) Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res 83: 90–93. doi: 10.1016/j.antiviral.2009.03.003 19501261

6. Dharan NJ, Gubareva LV, Meyer JJ, Okomo-Adhiambo M, McClinton RC, et al. (2009) Infections with oseltamivir resistant influenza A(H1N1) virus in the United States. JAMA 301: 1034–1041. doi: 10.1001/jama.2009.294 19255110

7. Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, et al. (2005) Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother 49: 981–986. 15728892

8. Manns MP, Wedemeyer H, Cornberg M (2006) Treating viral hepatitis C: efficacy, side effects, and complications. Gut 55: 1350–1359. 16905701

9. Klumpp K, Ruigrok RW, Baudin F (1997) Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure. EMBO J 16: 1248–1257. 9135141

10. Arranz R, Coloma R, Chichon FJ, Conesa JJ, Carrascosa JL, et al. (2012) The structure of native influenza virion ribonucleoproteins. Science 338: 1634–1637. doi: 10.1126/science.1228172 23180776

11. Ye Q, Krug RM, Tao YJ (2006) The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444: 1078–1082. 17151603

12. Ye Q, Guu TS, Mata DA, Kuo RL, Smith B, et al. (2012) Biochemical and structural evidence in support of a coherent model for the formation of the double-helical influenza A virus ribonucleoprotein. MBio 4: e00467–00412. doi: 10.1128/mBio.00467-12 23269829

13. Yasuda J, Nakada S, Kato A, Toyoda T, Ishihama A (1993) Molecular assembly of influenza virus: association of the NS2 protein with virion matrix. Virology 196: 249–255. 8356796

14. Akarsu H, Burmeister WP, Petosa C, Petit I, Müller CW, et al. (2003) Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). EMBO J 22: 4646–4655. 12970177

15. Shimizu T, Takizawa N, Watanabe K, Nagata K, Kobayashi N (2011) Crucial role of the influenza virus NS2 (NEP) C-terminal domain in M1 binding and nuclear export of vRNP. FEBS Lett 585: 41–46. doi: 10.1016/j.febslet.2010.11.017 21081124

16. Ye Z, Liu T, Offringa DP, McInnis J, Levandowski RA (1999) Association of influenza virus matrix protein with ribonucleoproteins. J Virol 73: 7467–7473. 10438836

17. Noton SL, Medcalf E, Fisher D, Mullin AE, Elton D, et al. (2007) Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. J Gen Virol 88: 2280–2290. 17622633

18. Yu M, Liu X, Cao S, Zhao Z, Zhang K, et al. (2012) Identification and characterization of three novel nuclear export signals in the influenza A virus nucleoprotein. J Virol 86: 4970–4980. doi: 10.1128/JVI.06159-11 22345439

19. Chutiwitoonchai N, Kakisaka M, Yamada K, Aida Y (2014) Comparative Analysis of Seven Viral Nuclear Export Signals (NESs) Reveals the Crucial Role of Nuclear Export Mediated by the Third NES Consensus Sequence of Nucleoprotein (NP) in Influenza A Virus Replication. PLoS One 9: e105081. doi: 10.1371/journal.pone.0105081 25119991

20. Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R, et al. (2001) Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol 75: 408–419. 11119609

21. Aida Y, Sasaki Y, Hagiwara K (2012) Discovery of Novel Antiviral Agents Directed Against the Influenza A Virus Nucleoprotein. Antiviral Drugs—Aspects of Clinical Use and Recent Advances; 99–120.

22. Hagiwara K, Kondoh Y, Ueda A, Yamada K, Goto H, et al. (2010) Discovery of novel antiviral agents directed against the influenza A virus nucleoprotein using photo-cross-linked chemical arrays. Biochem Biophys Res Commun 394: 721–727. doi: 10.1016/j.bbrc.2010.03.058 20230782

23. Shen YF, Chen YH, Chu SY, Lin MI, Hsu HT, et al. (2011) E339…R416 salt bridge of nucleoprotein as a feasible target for influenza virus inhibitors. Proc Natl Acad Sci U S A 108: 16515–16520. doi: 10.1073/pnas.1113107108 21930946

24. Kao RY, Yang D, Lau LS, Tsui WH, Hu L, et al. (2010) Identification of influenza A nucleoprotein as an antiviral target. Nat Biotechnol 28: 600–605. doi: 10.1038/nbt.1638 20512121

25. Gerritz SW, Cianci C, Kim S, Pearce BC, Deminie C, et al. (2011) Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers. Proc Natl Acad Sci U S A 108: 15366–15371. doi: 10.1073/pnas.1107906108 21896751

26. Sasaki Y, Kakisaka M, Chutiwitoonchai N, Tajima S, Hikono H, et al. (2014) Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity. Biochem Biophys Res Commun 450: 49–54. doi: 10.1016/j.bbrc.2014.05.058 24858693

27. Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10: 1093–1095. 8378254

28. Okomo-Adhiambo M, Demmler-Harrison GJ, Deyde VM, Sheu TG, Xu X, et al. (2010) Detection of E119V and E119I mutations in influenza A (H3N2) viruses isolated from an immunocompromised patient: challenges in diagnosis of oseltamivir resistance. Antimicrob Agents Chemother 54: 1834–1841. doi: 10.1128/AAC.01608-09 20194700

29. Chou YY, Heaton NS, Gao Q, Palese P, Singer RH, et al. (2013) Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. PLoS Pathog 9: e1003358. doi: 10.1371/journal.ppat.1003358 23671419

30. Chase GP, Rameix-Welti MA, Zvirbliene A, Zvirblis G, Gotz V, et al. (2011) Influenza virus ribonucleoprotein complexes gain preferential access to cellular export machinery through chromatin targeting. PLoS Pathog 7: e1002187. doi: 10.1371/journal.ppat.1002187 21909257

31. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, et al. (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30: 2785–2791. doi: 10.1002/jcc.21256 19399780

32. Kanoh N, Honda K, Simizu S, Muroi M, Osada H (2005) Photo-cross-linked small-molecule affinity matrix for facilitating forward and reverse chemical genetics. 17. Ketha KM, Atreya CD (2008) Application of bioinformatics-coupled experimental analysis reveals a new transport-competent nuclear localization signal in the nucleoprotein of influenza A virus strain. BMC Cell Biol 9: 22. doi: 10.1186/1471-2121-9-22 18442378

33. Tarus B, Bakowiez O, Chenavas S, Duchemin L, Estrozi LF, et al. (2012) Oligomerization paths of the nucleoprotein of influenza A virus. Biochimie 94: 776–785. doi: 10.1016/j.biochi.2011.11.009 22155087

34. Ng AK, Zhang H, Tan K, Li Z, Liu JH, et al. (2008) Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design. FASEB J 22: 3638–3647. doi: 10.1096/fj.08-112110 18614582

35. Compans RW, Content J, Duesberg PH (1972) Structure of the ribonucleoprotein of influenza virus. J Virol 10: 795–800. 4117350

36. Ortega J, Martin-Benito J, Zurcher T, Valpuesta JM, Carrascosa JL, et al. (2000) Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J Virol 74: 156–163. 10590102

37. Chan WH, Ng AK, Robb NC, Lam MK, Chan PK, et al. (2010) Functional analysis of the influenza virus H5N1 nucleoprotein tail loop reveals amino acids that are crucial for oligomerization and ribonucleoprotein activities. J Virol 84: 7337–7345. doi: 10.1128/JVI.02474-09 20463064

38. Ito J, Tabei Y, Shimizu K, Tsuda K, Tomii K (2012) PoSSuM: a database of similar protein-ligand binding and putative pockets. Nucleic Acids Res 40: D541–548. doi: 10.1093/nar/gkr1130 22135290

39. Konc J, Janezic D (2012) ProBiS-2012: web server and web services for detection of structurally similar binding sites in proteins. Nucleic Acids Res 40: W214–221. doi: 10.1093/nar/gks435 22600737

40. Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, et al. (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458: 914–918. doi: 10.1038/nature07745 19194459

41. Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, et al. (2009) Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature 458: 909–913. doi: 10.1038/nature07720 19194458

42. DuBois RM, Slavish PJ, Baughman BM, Yun MK, Bao J, et al. (2012) Structural and biochemical basis for development of influenza virus inhibitors targeting the PA endonuclease. PLoS Pathog 8: e1002830. doi: 10.1371/journal.ppat.1002830 22876176

43. Chenavas S, Estrozi LF, Slama-Schwok A, Delmas B, Di Primo C, et al. (2013) Monomeric nucleoprotein of influenza A virus. PLoS Pathog 9: e1003275. doi: 10.1371/journal.ppat.1003275 23555270

44. Li Z, Watanabe T, Hatta M, Watanabe S, Nanbo A, et al. (2009) Mutational analysis of conserved amino acids in the influenza A virus nucleoprotein. J Virol 83: 4153–4162. doi: 10.1128/JVI.02642-08 19225007

45. Hutchinson EC, Denham EM, Thomas B, Trudgian DC, Hester SS, et al. (2012) Mapping the phosphoproteome of influenza A and B viruses by mass spectrometry. PLoS Pathog 8: e1002993. doi: 10.1371/journal.ppat.1002993 23144613

46. Sun Q, Carrasco YP, Hu Y, Guo X, Mirzaei H, et al. (2013) Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1. Proc Natl Acad Sci U S A 110: 1303–1308. doi: 10.1073/pnas.1217203110 23297231

47. Prokudina-Kantorovich EN, Semenova NP (1996) Intracellular oligomerization of influenza virus nucleoprotein. Virology 223: 51–56. 8806539

48. Elton D, Medcalf E, Bishop K, Digard P (1999) Oligomerization of the influenza virus nucleoprotein: identification of positive and negative sequence elements. Virology 260: 190–200. 10405371

49. Schumann M, Armen RS (2013) Identification of distant drug off-targets by direct superposition of binding pocket surfaces. PLoS One 8: e83533. doi: 10.1371/journal.pone.0083533 24391782

50. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56: 152–179. 1579108

51. Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, et al. (2002) In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother 46: 977–981. 11897578

52. Arnott JA, Planey SL (2012) The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov 7: 863–875. 22992175

53. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, et al. (2008) The influenza virus resource at the National Center for Biotechnology Information. J Virol 82: 596–601. 17942553

54. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059–3066. 12136088

55. Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2014.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#