IL-27 Signaling Is Crucial for Survival of Mice Infected with African Trypanosomes via Preventing Lethal Effects of CD4 T Cells and IFN-γ
Infection with extracellular protozoan parasites, African trypanosomes, is characterized by a persistent inflammatory immune response. It has been recently shown that maintaining the balance of the inflammatory responses via dampening M1-type myeloid cell activation is critical to guarantee control of the parasites and survival of the host. In this study, we demonstrated that IL-27 receptor-deficient (IL-27R-/-) mice infected with African trypanosomes developed an excessive inflammatory response and severe liver immunopathology, resulting in dramatically reduced survival, as compared to infected wild-type mice. The early mortality of infected IL-27R-/- mice was correlated with significantly elevated secretions of inflammatory cytokines, particularly IFN-γ, and enhanced activation of CD4+ Th1 cells. Importantly, IL-10 production was not impaired in infected IL-27R-/- mice. Either depletion of CD4+ T cells, resulting in a dramatically reduced secretion of IFN-γ, or neutralization of IFN-γ, prevented the early mortality of infected IL-27R-/- mice with a significantly reduced inflammatory response and a major amelioration of the liver pathology. Thus, our data identify IL-27 signaling as a novel pathway to prevent the early mortality via inhibiting hyperactivation of CD4+ Th1 cells and their excessive secretions of IFN-γ during experimental infection with extracellular protozoan parasites African trypanosomes.
Vyšlo v časopise:
IL-27 Signaling Is Crucial for Survival of Mice Infected with African Trypanosomes via Preventing Lethal Effects of CD4 T Cells and IFN-γ. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1005065
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005065
Souhrn
Infection with extracellular protozoan parasites, African trypanosomes, is characterized by a persistent inflammatory immune response. It has been recently shown that maintaining the balance of the inflammatory responses via dampening M1-type myeloid cell activation is critical to guarantee control of the parasites and survival of the host. In this study, we demonstrated that IL-27 receptor-deficient (IL-27R-/-) mice infected with African trypanosomes developed an excessive inflammatory response and severe liver immunopathology, resulting in dramatically reduced survival, as compared to infected wild-type mice. The early mortality of infected IL-27R-/- mice was correlated with significantly elevated secretions of inflammatory cytokines, particularly IFN-γ, and enhanced activation of CD4+ Th1 cells. Importantly, IL-10 production was not impaired in infected IL-27R-/- mice. Either depletion of CD4+ T cells, resulting in a dramatically reduced secretion of IFN-γ, or neutralization of IFN-γ, prevented the early mortality of infected IL-27R-/- mice with a significantly reduced inflammatory response and a major amelioration of the liver pathology. Thus, our data identify IL-27 signaling as a novel pathway to prevent the early mortality via inhibiting hyperactivation of CD4+ Th1 cells and their excessive secretions of IFN-γ during experimental infection with extracellular protozoan parasites African trypanosomes.
Zdroje
1. Simarro PP, Cecchi G, Franco JR, Paone M, Diarra A, et al. (2012) Estimating and mapping the population at risk of sleeping sickness. PLoS Negl Trop Dis 6: e1859. doi: 10.1371/journal.pntd.0001859 23145192
2. Steverding D (2008) The history of African trypanosomiasis. Parasit Vectors 1: 3. doi: 10.1186/1756-3305-1-3 18275594
3. Beschin A, Van Den Abbeele J, De Baetselier P, Pays E (2014) African trypanosome control in the insect vector and mammalian host. Trends Parasitol S1471-4922(14)00144-5 [pii] doi: 10.1016/j.pt.2014.08.006
4. Tabel H, Wei G, Shi M (2008) T cells and immunopathogenesis of experimental African trypanosomiasis. Immunological reviews 225: 128–139. doi: 10.1111/j.1600-065X.2008.00675.x 18837780
5. Mansfield JM, Paulnock DM (2005) Regulation of innate and acquired immunity in African trypanosomiasis. Parasite Immunol 27: 361–371. 16179030
6. Magez S, Caljon G (2011) Mouse models for pathogenic African trypanosomes: unravelling the immunology of host-parasite-vector interactions. Parasite Immunol 33: 423–429. doi: 10.1111/j.1365-3024.2011.01293.x 21480934
7. Dempsey WL, Mansfield JM (1983) Lymphocyte function in experimental African trypanosomiasis. VI. Parasite-specific immunosuppression. Journal of immunology 130: 2896–2898.
8. Holmes PH, MacAskill JA, Whitelaw DD, Jennings FW, Urquhart GM (1979) Immunological clearance of 75Se-labelled Trypanosoma brucei in mice. I. Aspects of the radiolabelling technique. Immunology 36: 415–420. 437835
9. Macaskill JA, Holmes PH, Whitelaw DD, McConnell I, Jennings FW, et al. (1980) Immunological clearance of 75Se-labelled Trypanosoma brucei in mice. II. Mechanisms in immune animals. Immunology 40: 629–635. 7429544
10. Kaushik RS, Uzonna JE, Gordon JR, Tabel H (1999) Innate resistance to Trypanosoma congolense infections: differential production of nitric oxide by macrophages from susceptible BALB/c and resistant C57Bl/6 mice. Exp Parasitol 92: 131–143. 10366538
11. Shi M, Pan W, Tabel H (2003) Experimental African trypanosomiasis: IFN-gamma mediates early mortality. Eur J Immunol 33: 108–118. 12594839
12. Shi M, Wei G, Pan W, Tabel H (2004) Trypanosoma congolense infections: antibody-mediated phagocytosis by Kupffer cells. J Leukoc Biol 76: 399–405. 15136584
13. Hertz CJ, Filutowicz H, Mansfield JM (1998) Resistance to the African trypanosomes is IFN-gamma dependent. Journal of immunology 161: 6775–6783.
14. Liu G, Sun D, Wu H, Zhang M, Huan H, et al. (2015) Distinct Contributions of CD4+ and CD8+ T Cells to Pathogenesis of Trypanosoma brucei Infection in the Context of Gamma Interferon and Interleukin-10. Infect Immun 83: 2785–2795. doi: 10.1128/IAI.00357-15 25916989
15. Magez S, Radwanska M, Drennan M, Fick L, Baral TN, et al. (2006) Interferon-gamma and nitric oxide in combination with antibodies are key protective host immune factors during trypanosoma congolense Tc13 Infections. J Infect Dis 193: 1575–1583. 16652287
16. Dagenais TR, Demick KP, Bangs JD, Forest KT, Paulnock DM, et al. (2009) T-cell responses to the trypanosome variant surface glycoprotein are not limited to hypervariable subregions. Infect Immun 77: 141–151. doi: 10.1128/IAI.00729-08 18936180
17. Dagenais TR, Freeman BE, Demick KP, Paulnock DM, Mansfield JM (2009) Processing and presentation of variant surface glycoprotein molecules to T cells in African trypanosomiasis. Journal of immunology 183: 3344–3355.
18. de Gee AL, Sonnenfeld G, Mansfield JM (1985) Genetics of resistance to the African trypanosomes. V. Qualitative and quantitative differences in interferon production among susceptible and resistant mouse strains. Journal of immunology 134: 2723–2726.
19. Drennan MB, Stijlemans B, Van den Abbeele J, Quesniaux VJ, Barkhuizen M, et al. (2005) The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent. Journal of immunology 175: 2501–2509.
20. Namangala B, Noel W, De Baetselier P, Brys L, Beschin A (2001) Relative contribution of interferon-gamma and interleukin-10 to resistance to murine African trypanosomosis. J Infect Dis 183: 1794–1800. 11372033
21. Barkhuizen M, Magez S, Atkinson RA, Brombacher F (2007) Interleukin-12p70-dependent interferon- gamma production is crucial for resistance in African trypanosomiasis. J Infect Dis 196: 1253–1260. 17955445
22. Guilliams M, Movahedi K, Bosschaerts T, VandenDriessche T, Chuah MK, et al. (2009) IL-10 dampens TNF/inducible nitric oxide synthase-producing dendritic cell-mediated pathogenicity during parasitic infection. Journal of immunology 182: 1107–1118.
23. Lucas R, Magez S, De Leys R, Fransen L, Scheerlinck JP, et al. (1994) Mapping the lectin-like activity of tumor necrosis factor. Science 263: 814–817. 8303299
24. Magez S, Radwanska M, Beschin A, Sekikawa K, De Baetselier P (1999) Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun 67: 3128–3132. 10338530
25. Magez S, Radwanska M, Drennan M, Fick L, Baral TN, et al. (2007) Tumor necrosis factor (TNF) receptor-1 (TNFp55) signal transduction and macrophage-derived soluble TNF are crucial for nitric oxide-mediated Trypanosoma congolense parasite killing. J Infect Dis 196: 954–962. 17703428
26. Bosschaerts T, Guilliams M, Stijlemans B, Morias Y, Engel D, et al. (2010) Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS Pathog 6: e1001045. doi: 10.1371/journal.ppat.1001045 20714353
27. Bosschaerts T, Morias Y, Stijlemans B, Herin M, Porta C, et al. (2011) IL-10 limits production of pathogenic TNF by M1 myeloid cells through induction of nuclear NF-kappaB p50 member in Trypanosoma congolense infection-resistant C57BL/6 mice. Eur J Immunol 41: 3270–3280. doi: 10.1002/eji.201041307 21805465
28. Shi M, Wei G, Pan W, Tabel H (2006) Experimental African trypanosomiasis: a subset of pathogenic, IFN-gamma-producing, MHC class II-restricted CD4+ T cells mediates early mortality in highly susceptible mice. Journal of immunology 176: 1724–1732.
29. Uzonna JE, Kaushik RS, Gordon JR, Tabel H (1998) Experimental murine Trypanosoma congolense infections. I. Administration of anti-IFN-gamma antibodies alters trypanosome-susceptible mice to a resistant-like phenotype. Journal of immunology 161: 5507–5515.
30. Maclean L, Odiit M, Sternberg JM (2006) Intrathecal cytokine responses in Trypanosoma brucei rhodesiense sleeping sickness patients. Trans R Soc Trop Med Hyg 100: 270–275. 16343570
31. Ngotho M, Kagira JM, Jensen HE, Karanja SM, Farah IO, et al. (2009) Immunospecific immunoglobulins and IL-10 as markers for Trypanosoma brucei rhodesiense late stage disease in experimentally infected vervet monkeys. Trop Med Int Health 14: 736–747. doi: 10.1111/j.1365-3156.2009.02285.x 19573160
32. Yoshihara K, Morris A, Iraqi F, Naessens J (2007) Cytokine mRNA profiles in bovine macrophages stimulated with Trypanosoma congolense. J Vet Med Sci 69: 421–423. 17485933
33. Hunter CA, Kastelein R (2012) Interleukin-27: balancing protective and pathological immunity. Immunity 37: 960–969. doi: 10.1016/j.immuni.2012.11.003 23244718
34. Yoshida H, Miyazaki Y (2008) Regulation of immune responses by interleukin-27. Immunological reviews 226: 234–247. doi: 10.1111/j.1600-065X.2008.00710.x 19161428
35. Chen Q, Ghilardi N, Wang H, Baker T, Xie MH, et al. (2000) Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature 407: 916–920. 11057672
36. Takeda A, Hamano S, Yamanaka A, Hanada T, Ishibashi T, et al. (2003) Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. Journal of immunology 170: 4886–4890.
37. Yoshida H, Hamano S, Senaldi G, Covey T, Faggioni R, et al. (2001) WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection. Immunity 15: 569–578. 11672539
38. Findlay EG, Greig R, Stumhofer JS, Hafalla JC, de Souza JB, et al. (2010) Essential role for IL-27 receptor signaling in prevention of Th1-mediated immunopathology during malaria infection. Journal of immunology 185: 2482–2492.
39. Freitas do Rosario AP, Lamb T, Spence P, Stephens R, Lang A, et al. (2012) IL-27 promotes IL-10 production by effector Th1 CD4+ T cells: a critical mechanism for protection from severe immunopathology during malaria infection. Journal of immunology 188: 1178–1190.
40. Hamano S, Himeno K, Miyazaki Y, Ishii K, Yamanaka A, et al. (2003) WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production. Immunity 19: 657–667. 14614853
41. Rosas LE, Satoskar AA, Roth KM, Keiser TL, Barbi J, et al. (2006) Interleukin-27R (WSX-1/T-cell cytokine receptor) gene-deficient mice display enhanced resistance to leishmania donovani infection but develop severe liver immunopathology. Am J Pathol 168: 158–169. 16400019
42. Villarino A, Hibbert L, Lieberman L, Wilson E, Mak T, et al. (2003) The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity 19: 645–655. 14614852
43. Guilliams M, Oldenhove G, Noel W, Herin M, Brys L, et al. (2007) African trypanosomiasis: naturally occurring regulatory T cells favor trypanotolerance by limiting pathology associated with sustained type 1 inflammation. Journal of immunology 179: 2748–2757.
44. Stijlemans B, Leng L, Brys L, Sparkes A, Vansintjan L, et al. (2014) MIF Contributes to Trypanosoma brucei Associated Immunopathogenicity Development. PLoS Pathog 10: e1004414. doi: 10.1371/journal.ppat.1004414 25255103
45. Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, et al. (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8: 1380–1389. 17994022
46. Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H, et al. (2007) Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol 8: 1372–1379. 17994023
47. Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, et al. (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8: 1363–1371. 17994025
48. Masocha W, Robertson B, Rottenberg ME, Mhlanga J, Sorokin L, et al. (2004) Cerebral vessel laminins and IFN-gamma define Trypanosoma brucei brucei penetration of the blood-brain barrier. J Clin Invest 114: 689–694. 15343387
49. Sternberg JM, Rodgers J, Bradley B, Maclean L, Murray M, et al. (2005) Meningoencephalitic African trypanosomiasis: Brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology. J Neuroimmunol 167: 81–89. 16054238
50. Bosschaerts T, Guilliams M, Stijlemans B, De Baetselier P, Beschin A (2009) Understanding the role of monocytic cells in liver inflammation using parasite infection as a model. Immunobiology 214: 737–747. doi: 10.1016/j.imbio.2009.06.010 19577324
51. Holscher C, Holscher A, Ruckerl D, Yoshimoto T, Yoshida H, et al. (2005) The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. Journal of immunology 174: 3534–3544.
52. Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, et al. (1996) In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. Journal of immunology 157: 798–805.
53. Hunter CA, Ellis-Neyes LA, Slifer T, Kanaly S, Grunig G, et al. (1997) IL-10 is required to prevent immune hyperactivity during infection with Trypanosoma cruzi. Journal of immunology 158: 3311–3316.
54. Villarino AV, Stumhofer JS, Saris CJ, Kastelein RA, de Sauvage FJ, et al. (2006) IL-27 limits IL-2 production during Th1 differentiation. Journal of immunology 176: 237–247.
55. Schleifer KW, Filutowicz H, Schopf LR, Mansfield JM (1993) Characterization of T helper cell responses to the trypanosome variant surface glycoprotein. Journal of immunology 150: 2910–2919.
56. Magez S, Geuskens M, Beschin A, del Favero H, Verschueren H, et al. (1997) Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. J Cell Biol 137: 715–727. 9151676
57. Barkhuizen M, Magez S, Ryffel B, Brombacher F (2008) Interleukin-12p70 deficiency increases survival and diminishes pathology in Trypanosoma congolense infection. J Infect Dis 198: 1284–1291. doi: 10.1086/592048 18816189
58. Tabel H (1982) Activation of the alternative pathway of bovine complement by Trypanosoma congolense. Parasite Immunol 4: 329–335. 7145463
59. Lanham SM, Godfrey DG (1970) Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol 28: 521–534. 4993889
60. Blom KG, Qazi MR, Matos JB, Nelson BD, DePierre JW, et al. (2009) Isolation of murine intrahepatic immune cells employing a modified procedure for mechanical disruption and functional characterization of the B, T and natural killer T cells obtained. Clinical and experimental immunology 155: 320–329. doi: 10.1111/j.1365-2249.2008.03815.x 19040612
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 7
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein
- N-acetylglucosamine Regulates Virulence Properties in Microbial Pathogens
- Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection
- RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion