Calprotectin Increases the Activity of the SaeRS Two Component System and Murine Mortality during Infections
Staphylococcus aureus is an important human pathogen causing skin infections and a variety of life-threatening diseases such as pneumonia, sepsis, and toxic shock syndrome. Previous study showed that the growth of S. aureus in abscesses is suppressed by the host antimicrobial protein calprotectin, which sequesters Zn and Mn from bacterial usage. During bacterial infection, calprotectin also plays an important role in the production of proinflammatory cytokines. Although the antimicrobial activity of calprotectin has been well defined, it is not known how the proinflammatory property of calprotectin affects staphylococcal infection. In this study, we found that the Zn-binding property of calprotectin increases the pathogenic potential of S. aureus by enhancing the activity of the SaeRS two component system in S. aureus. We also found that, under certain infection conditions, the proinflammatory property of calprotectin is rather detrimental to host survival. Our study illustrates that the important antimicrobial protein can be exploited by S. aureus to render the bacterium a more effective pathogen, and provides an example of the intricate tug-of-war between host and a bacterial pathogen.
Vyšlo v časopise:
Calprotectin Increases the Activity of the SaeRS Two Component System and Murine Mortality during Infections. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1005026
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005026
Souhrn
Staphylococcus aureus is an important human pathogen causing skin infections and a variety of life-threatening diseases such as pneumonia, sepsis, and toxic shock syndrome. Previous study showed that the growth of S. aureus in abscesses is suppressed by the host antimicrobial protein calprotectin, which sequesters Zn and Mn from bacterial usage. During bacterial infection, calprotectin also plays an important role in the production of proinflammatory cytokines. Although the antimicrobial activity of calprotectin has been well defined, it is not known how the proinflammatory property of calprotectin affects staphylococcal infection. In this study, we found that the Zn-binding property of calprotectin increases the pathogenic potential of S. aureus by enhancing the activity of the SaeRS two component system in S. aureus. We also found that, under certain infection conditions, the proinflammatory property of calprotectin is rather detrimental to host survival. Our study illustrates that the important antimicrobial protein can be exploited by S. aureus to render the bacterium a more effective pathogen, and provides an example of the intricate tug-of-war between host and a bacterial pathogen.
Zdroje
1. Archer GL (1998) Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26: 1179–1181. 9597249
2. Cheung AL, Nishina KA, Trotonda MP, Tamber S (2008) The SarA protein family of Staphylococcus aureus. Int J Biochem Cell Biol 40: 355–361. 18083623
3. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42: 541–564. doi: 10.1146/annurev.genet.42.110807.091640 18713030
4. Adhikari RP, Novick RP (2008) Regulatory organization of the staphylococcal sae locus. Microbiology 154: 949–959. doi: 10.1099/mic.0.2007/012245-0 18310041
5. Geiger T, Goerke C, Mainiero M, Kraus D, Wolz C (2008) The Virulence Regulator Sae of Staphylococcus aureus: Promoter Activities and Response to Phagocytosis-Related Signals. J Bacteriol 190: 3419–3428. doi: 10.1128/JB.01927-07 18344360
6. Jeong DW, Cho H, Jones MB, Shatzkes K, Sun F, et al. (2012) The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus. Mol Microbiol 86: 331–348. doi: 10.1111/j.1365-2958.2012.08198.x 22882143
7. Sun F, Li C, Jeong D, Sohn C, He C, et al. (2010) In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS. J Bacteriol 192: 2111–2127. doi: 10.1128/JB.01524-09 20172998
8. Voyich JM, Vuong C, Dewald M, Nygaard TK, Kocianova S, et al. (2009) The SaeR/S Gene Regulatory System Is Essential for Innate Immune Evasion by Staphylococcus aureus. J Infect Dis 199: 1698–1706. doi: 10.1086/598967 19374556
9. Goerke C, Fluckiger U, Steinhuber A, Bisanzio V, Ulrich M, et al. (2005) Role of Staphylococcus aureus global regulators sae and sigmaB in virulence gene expression during device-related infection. Infect Immun 73: 3415–3421. 15908369
10. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, et al. (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76: 1427–1435. 2997278
11. Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, et al. (2010) Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6: e1001036. doi: 10.1371/journal.ppat.1001036 20700445
12. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, et al. (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172: 1169–1176. 14707093
13. Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, et al. (2005) Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6: 920–927. 16086019
14. Rooijakkers SH, Ruyken M, van Roon J, van Kessel KP, van Strijp JA, et al. (2006) Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell Microbiol 8: 1282–1293. 16882032
15. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, et al. (2004) Neutrophil extracellular traps kill bacteria. Science 303: 1532–1535. 15001782
16. Kobayashi SD, Voyich JM, Burlak C, DeLeo FR (2005) Neutrophils in the innate immune response. Arch Immunol Ther Exp (Warsz) 53: 505–517.
17. Achouiti A, Vogl T, Urban CF, Rohm M, Hommes TJ, et al. (2012) Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis. PLoS Pathog 8: e1002987. doi: 10.1371/journal.ppat.1002987 23133376
18. Bianchi M, Niemiec MJ, Siler U, Urban CF, Reichenbach J (2011) Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J Allergy Clin Immunol 127: 1243–1252 e1247. doi: 10.1016/j.jaci.2011.01.021 21376380
19. Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR, et al. (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319: 962–965. doi: 10.1126/science.1152449 18276893
20. Damo SM, Kehl-Fie TE, Sugitani N, Holt ME, Rathi S, et al. (2013) Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci U S A 110: 3841–3846. doi: 10.1073/pnas.1220341110 23431180
21. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81: 1–5.
22. Foell D, Wittkowski H, Vogl T, Roth J (2007) S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 81: 28–37. 16943388
23. Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, et al. (2011) Nutrient Metal Sequestration by Calprotectin Inhibits Bacterial Superoxide Defense, Enhancing Neutrophil Killing of Staphylococcus aureus. Cell Host Microbe 10: 158–164. doi: 10.1016/j.chom.2011.07.004 21843872
24. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, et al. (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13: 1042–1049. 17767165
25. Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, et al. (2012) Alarmins: awaiting a clinical response. J Clin Invest 122: 2711–2719. doi: 10.1172/JCI62423 22850880
26. Raquil MA, Anceriz N, Rouleau P, Tessier PA (2008) Blockade of antimicrobial proteins S100A8 and S100A9 inhibits phagocyte migration to the alveoli in streptococcal pneumonia. J Immunol 180: 3366–3374. 18292562
27. Vandal K, Rouleau P, Boivin A, Ryckman C, Talbot M, et al. (2003) Blockade of S100A8 and S100A9 suppresses neutrophil migration in response to lipopolysaccharide. J Immunol 171: 2602–2609. 12928412
28. Cesaro A, Anceriz N, Plante A, Page N, Tardif MR, et al. (2012) An inflammation loop orchestrated by S100A9 and calprotectin is critical for development of arthritis. PLoS One 7: e45478. doi: 10.1371/journal.pone.0045478 23029038
29. Al-Rawahi GN, Reynolds S, Porter SD, Forrester L, Kishi L, et al. (2008) Community-Associated CMRSA-10 (USA-300) is the Predominant Strain among Methicillin-Resistant Staphylococcus aureus Strains Causing Skin and Soft Tissue Infections in Patients Presenting to the Emergency Department of a Canadian Tertiary Care Hospital. J Emerg Med 38: 6–11. doi: 10.1016/j.jemermed.2007.09.030 18325716
30. Schafer D, Lam TT, Geiger T, Mainiero M, Engelmann S, et al. (2009) A point mutation in the sensor histidine kinase SaeS of Staphylococcus aureus strain Newman alters response to biocide exposure. J Bacteriol 191: 7306–7314. doi: 10.1128/JB.00630-09 19783632
31. Moore GE, Hood DB (1993) Modified RPMI 1640 culture medium. In Vitro Cell Dev Biol Anim 29A: 268. 8320178
32. Hallgren R, Feltelius N, Garcia R, Venge P, Lindh U (1989) Metal content of neutrophil granules is altered in chronic inflammation. Inflammation 13: 383–392. 2547715
33. Nakahara H, Nagame Y, Yoshizawa Y, Oda H, Gotoh S, et al. (1979) Trace element analysis of human blood serum by neutron activation analysis. J Radioanal Chem 54: 183–190.
34. Baker J, Sitthisak S, Sengupta M, Johnson M, Jayaswal RK, et al. (2010) Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation. Appl Environ Microbiol 76: 150–160. doi: 10.1128/AEM.02268-09 19880638
35. Zurek OW, Nygaard TK, Watkins RL, Pallister KB, Torres VJ, et al. (2013) The Role of Innate Immunity in Promoting SaeR/S-Mediated Virulence in Staphylococcus aureus. J Innate Immun 6: 21–30. doi: 10.1159/000351200 23816635
36. Ehrchen JM, Sunderkotter C, Foell D, Vogl T, Roth J (2009) The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 86: 557–566. doi: 10.1189/jlb.1008647 19451397
37. Watkins RL, Pallister KB, Voyich JM (2011) The SaeR/S gene regulatory system induces a pro-inflammatory cytokine response during Staphylococcus aureus infection. PLoS One 6: e19939. doi: 10.1371/journal.pone.0019939 21603642
38. Watkins RL, Zurek OW, Pallister KB, Voyich JM (2013) The SaeR/S two-component system induces interferon-gamma production in neutrophils during invasive Staphylococcus aureus infection. Microbes Infect 15: 749–754. doi: 10.1016/j.micinf.2013.05.004 23792139
39. Palazzolo AM, Suquet C, Konkel ME, Hurst JK (2005) Green fluorescent protein-expressing Escherichia coli as a selective probe for HOCl generation within neutrophils. Biochemistry 44: 6910–6919. 15865436
40. Schwartz J, Leidal KG, Femling JK, Weiss JP, Nauseef WM (2009) Neutrophil bleaching of GFP-expressing staphylococci: probing the intraphagosomal fate of individual bacteria. J Immunol 183: 2632–2641. doi: 10.4049/jimmunol.0804110 19620311
41. Hashimoto M, Tawaratsumida K, Kariya H, Aoyama K, Tamura T, et al. (2006) Lipoprotein is a predominant Toll-like receptor 2 ligand in Staphylococcus aureus cell wall components. Int Immunol 18: 355–362. 16373361
42. Ellingsen E, Morath S, Flo T, Schromm A, Hartung T, et al. (2002) Induction of cytokine production in human T cells and monocytes by highly purified lipoteichoic acid: involvement of Toll-like receptors and CD14. Med Sci Monit 8: BR149–156. 12011760
43. Hattar K, Grandel U, Moeller A, Fink L, Iglhaut J, et al. (2006) Lipoteichoic acid (LTA) from Staphylococcus aureus stimulates human neutrophil cytokine release by a CD14-dependent, Toll-like-receptor-independent mechanism: Autocrine role of tumor necrosis factor-[alpha] in mediating LTA-induced interleukin-8 generation. Crit Care Med 34: 835–841. 16521278
44. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274: 17406–17409. 10364168
45. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13: 1205–1218. doi: 10.1007/s00775-008-0404-5 18604568
46. Schmitt J, Joost I, Skaar EP, Herrmann M, Bischoff M (2012) Haemin represses the haemolytic activity of Staphylococcus aureus in an Sae-dependent manner. Microbiology 158: 2619–2631. 22859613
47. Johnson M, Sengupta M, Purves J, Tarrant E, Williams PH, et al. (2011) Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus. Int J Med Microbiol 301: 44–52. doi: 10.1016/j.ijmm.2010.05.003 20705504
48. Omae Y, Hanada Y, Sekimizu K, Kaito C (2013) Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids. J Biol Chem 288: 25542–25550. doi: 10.1074/jbc.M113.495051 23873929
49. Liu Q, Cho H, Yeo WS, Bae T (2015) The Extracytoplasmic Linker Peptide of the Sensor Protein SaeS Tunes the Kinase Activity Required for Staphylococcal Virulence in Response to Host Signals. PLoS Pathog 11: e1004799. doi: 10.1371/journal.ppat.1004799 25849574
50. Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J, et al. (2009) Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One 4: e7446. doi: 10.1371/journal.pone.0007446 19826485
51. Onogawa T (2002) Staphylococcal alpha-toxin synergistically enhances inflammation caused by bacterial components. FEMS Immunol Med Microbiol 33: 15–21. 11985963
52. Dragneva Y, Anuradha CD, Valeva A, Hoffmann A, Bhakdi S, et al. (2001) Subcytocidal attack by staphylococcal alpha-toxin activates NF-kappaB and induces interleukin-8 production. Infect Immun 69: 2630–2635. 11254628
53. Bhakdi S, Muhly M, Korom S, Hugo F (1989) Release of interleukin-1 beta associated with potent cytocidal action of staphylococcal alpha-toxin on human monocytes. Infect Immun 57: 3512–3519. 2807534
54. Pantrangi M, Singh VK, Shukla SK (2014) Regulation of Staphylococcal Superantigen-Like Gene, ssl8 Expression in Staphylococcus aureus strain, RN6390. Clin Med Res.
55. Guggenberger C, Wolz C, Morrissey JA, Heesemann J (2012) Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Pathog 8: e1002434. doi: 10.1371/journal.ppat.1002434 22253592
56. Thammavongsa V, Missiakas DM, Schneewind O (2013) Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342: 863–866. doi: 10.1126/science.1242255 24233725
57. Olson ME, Nygaard TK, Ackermann L, Watkins RL, Zurek OW, et al. (2013) Staphylococcus aureus nuclease is an SaeRS-dependent virulence factor. Infect Immun 81: 1316–1324. doi: 10.1128/IAI.01242-12 23381999
58. Sastalla I, Chim K, Cheung GY, Pomerantsev AP, Leppla SH (2009) Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria. Appl Environ Microbiol 75: 2099–2110. doi: 10.1128/AEM.02066-08 19181829
59. Jeong DW, Cho H, Lee H, Li C, Garza J, et al. (2011) Identification of P3 promoter and distinct roles of the two promoters of the SaeRS two-component system in Staphylococcus aureus. J Bacteriol 193: 4672–4684. doi: 10.1128/JB.00353-11 21764914
60. Ji Y, Marra A, Rosenberg M, Woodnutt G (1999) Regulated antisense RNA eliminates alpha-toxin virulence in Staphylococcus aureus infection. J Bacteriol 181: 6585–6590. 10542157
61. Sun F, Cho H, Jeong DW, Li C, He C, et al. (2010) Aureusimines in Staphylococcus aureus are not involved in virulence. PLoS One 5: e15703. doi: 10.1371/journal.pone.0015703 21209955
62. Chervenick PA, Boggs DR, Marsh JC, Cartwright GE, Wintrobe MM (1968) Quantitative studies of blood and bone marrow neutrophils in normal mice. Am J Physiol 215: 353–360. 5665168
63. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3: 1101–1108. 18546601
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 7
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein
- N-acetylglucosamine Regulates Virulence Properties in Microbial Pathogens
- Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection
- RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion