#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

MiR-21 in Extracellular Vesicles Leads to Neurotoxicity via TLR7 Signaling in SIV Neurological Disease


HIV associated neurocognitive disorder (HAND) are neurological disorders caused due to the entry of HIV infection in the brain. HIV-1 does not directly infect central or peripheral neurons, however, virus-infected cells of the monocyte/macrophage lineage maintain a low-level HIV infection in the CNS. "Indirect effects" of macrophage activation–such as dysregulation of cytokines and chemokines, free-radical (oxidative stress) injury, and secretion of soluble factors that are potently neurotoxic–have been implicated as effectors of nervous system injury in HIV. Here, we report that extracellular vesicles released from macrophages can enhance neurotoxicity. Using a nonhuman primate model of HAND, simian immunodeficiency virus encephalitis (SIVE), we find that exosomes isolated from SIVE brains contain,microRNAs, including miR-21, that can serve as ligands to the key immune regulatory receptors, toll-like receptors, and can elicit neurotoxicity. We provide in vitro evidence for such an effect, and that the toxicity can be mediated by necroptosis. Thus, our study provides insights into other potential neurotoxic mechanisms by which HIV infection in the brain could harm neuronal health.


Vyšlo v časopise: MiR-21 in Extracellular Vesicles Leads to Neurotoxicity via TLR7 Signaling in SIV Neurological Disease. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1005032
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005032

Souhrn

HIV associated neurocognitive disorder (HAND) are neurological disorders caused due to the entry of HIV infection in the brain. HIV-1 does not directly infect central or peripheral neurons, however, virus-infected cells of the monocyte/macrophage lineage maintain a low-level HIV infection in the CNS. "Indirect effects" of macrophage activation–such as dysregulation of cytokines and chemokines, free-radical (oxidative stress) injury, and secretion of soluble factors that are potently neurotoxic–have been implicated as effectors of nervous system injury in HIV. Here, we report that extracellular vesicles released from macrophages can enhance neurotoxicity. Using a nonhuman primate model of HAND, simian immunodeficiency virus encephalitis (SIVE), we find that exosomes isolated from SIVE brains contain,microRNAs, including miR-21, that can serve as ligands to the key immune regulatory receptors, toll-like receptors, and can elicit neurotoxicity. We provide in vitro evidence for such an effect, and that the toxicity can be mediated by necroptosis. Thus, our study provides insights into other potential neurotoxic mechanisms by which HIV infection in the brain could harm neuronal health.


Zdroje

1. Wiley CA, Achim C (1994) Human immunodeficiency virus encephalitis is the pathological correlate of dementia in acquired immunodeficiency syndrome. Ann Neurol 36: 673–676. 7944304

2. Budka H (1991) Neuropathology of human immunodeficiency virus infection. Brain Pathol 1: 163–175. 1669705

3. Everall IP, Luthert PJ, Lantos PL (1991) Neuronal loss in the frontal cortex in HIV infection. Lancet 337: 1119–1121. 1674013

4. Crews L, Lentz MR, Gonzalez RG, Fox HS, Masliah E (2008) Neuronal injury in simian immunodeficiency virus and other animal models of neuroAIDS. J Neurovirol 14: 327–339. doi: 10.1080/13550280802132840 18780234

5. Kraft-Terry SD, Buch SJ, Fox HS, Gendelman HE (2009) A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron 64: 133–145. doi: 10.1016/j.neuron.2009.09.042 19840555

6. del Palacio M, Alvarez S, Munoz-Fernandez MA (2012) HIV-1 infection and neurocognitive impairment in the current era. Rev Med Virol 22: 33–45. doi: 10.1002/rmv.711 21990255

7. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, et al. (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69: 1789–1799. 17914061

8. Yelamanchili SV, Fox HS (2010) Defining larger roles for "tiny" RNA molecules: role of miRNAs in neurodegeneration research. J Neuroimmune Pharmacol 5: 63–69. doi: 10.1007/s11481-009-9172-4 19757077

9. Noorbakhsh F, Ramachandran R, Barsby N, Ellestad KK, LeBlanc A, et al. (2010) MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival. FASEB J 24: 1799–1812. doi: 10.1096/fj.09-147819 20097875

10. Chaudhuri AD, Yelamanchili SV, Marcondes MC, Fox HS (2013) Up-regulation of microRNA-142 in simian immunodeficiency virus encephalitis leads to repression of sirtuin1. FASEB J 27: 3720–3729. doi: 10.1096/fj.13-232678 23752207

11. Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS (2010) MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death Dis 1: e77. doi: 10.1038/cddis.2010.56 21170291

12. Hu G, Yao H, Chaudhuri AD, Duan M, Yelamanchili SV, et al. (2012) Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis 3: e381. doi: 10.1038/cddis.2012.114 22932723

13. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, et al. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9: 654–659. 17486113

14. Thery C Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3: 15. doi: 10.3410/B3-15 21876726

15. Lopez-Verrilli MA, Court FA (2012) Transfer of vesicles from schwann cells to axons: a novel mechanism of communication in the peripheral nervous system. Front Physiol 3: 205. doi: 10.3389/fphys.2012.00205 22707941

16. Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM (2013) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7: 182. doi: 10.3389/fncel.2013.00182 24194697

17. Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, et al. (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67: 2912–2915. 17409393

18. Nour AM, Modis Y (2014) Endosomal vesicles as vehicles for viral genomes. Trends Cell Biol.

19. Sampey GC, Meyering SS, Asad Zadeh M, Saifuddin M, Hakami RM, et al. (2014) Exosomes and their role in CNS viral infections. J Neurovirol.

20. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, et al. (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107: 6328–6333. doi: 10.1073/pnas.0914843107 20304794

21. Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE (2007) Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol 67: 1815–1829. 17701989

22. Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, et al. (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175: 2237–2243. 16081791

23. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, et al. (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31: 642–648. 16446100

24. Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Neuroinflammation 11: 68. doi: 10.1186/1742-2094-11-68 24694258

25. Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, et al. (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15: 827–835. doi: 10.1038/nn.3113 22610069

26. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, et al. (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109: E2110–2116. doi: 10.1073/pnas.1209414109 22753494

27. Park CK, Xu ZZ, Berta T, Han Q, Chen G, et al. (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82: 47–54. doi: 10.1016/j.neuron.2014.02.011 24698267

28. Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E (2012) The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 287: 43108–43115. doi: 10.1074/jbc.M112.404467 23129776

29. Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, et al. (2006) Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 36: 3256–3267. 17111347

30. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370: 455–465. doi: 10.1056/NEJMra1310050 24476434

31. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141: 302–313. doi: 10.1111/imm.12163 23981039

32. Kalani A, Tyagi A, Tyagi N (2014) Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol 49: 590–600. doi: 10.1007/s12035-013-8544-1 23999871

33. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, et al. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: 1526–1529. 14976262

34. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, et al. (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A 101: 5598–5603. 15034168

35. Buscaglia LE, Li Y (2011) Apoptosis and the target genes of microRNA-21. Chin J Cancer 30: 371–380. 21627859

36. Roy S, Sen CK (2012) miRNA in wound inflammation and angiogenesis. Microcirculation 19: 224–232. doi: 10.1111/j.1549-8719.2011.00156.x 22211762

37. Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, et al. (2014) Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem 289: 22284–22305. doi: 10.1074/jbc.M114.549659 24939845

38. Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12: 1659–1668. doi: 10.1111/j.1600-0854.2011.01225.x 21645191

39. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9: 581–593. doi: 10.1038/nri2567 19498381

40. Schneider A, Simons M (2013) Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 352: 33–47. doi: 10.1007/s00441-012-1428-2 22610588

41. Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M (2011) Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS One 6: e14724. doi: 10.1371/journal.pone.0014724 21373187

42. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23: 2838–2849. 15077147

43. Cho YS, Challa S, Moquin D, Genga R, Ray TD, et al. (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137: 1112–1123. doi: 10.1016/j.cell.2009.05.037 19524513

44. He S, Wang L, Miao L, Wang T, Du F, et al. (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137: 1100–1111. doi: 10.1016/j.cell.2009.05.021 19524512

45. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11: 700–714. doi: 10.1038/nrm2970 20823910

46. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, et al. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325: 332–336. doi: 10.1126/science.1172308 19498109

47. Holler N, Zaru R, Micheau O, Thome M, Attinger A, et al. (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1: 489–495. 11101870

48. Kim SO, Ono K, Han J (2001) Apoptosis by pan-caspase inhibitors in lipopolysaccharide-activated macrophages. Am J Physiol Lung Cell Mol Physiol 281: L1095–1105. 11597900

49. Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11: 290–297. doi: 10.1016/j.chom.2012.01.016 22423968

50. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, et al. (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1: 112–119. 16408008

51. Tan IL, McArthur JC (2011) HIV-associated central nervous system diseases in the era of combination antiretroviral therapy. Eur J Neurol 18: 371–372. doi: 10.1111/j.1468-1331.2010.03287.x 21159069

52. Cheng Y, Zhu P, Yang J, Liu X, Dong S, et al. (2010) Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 87: 431–439. doi: 10.1093/cvr/cvq082 20219857

53. Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, et al. (2012) microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 32: 17935–17947. doi: 10.1523/JNEUROSCI.3860-12.2012 23238710

54. Lei P, Li Y, Chen X, Yang S, Zhang J (2009) Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res 1284: 191–201. doi: 10.1016/j.brainres.2009.05.074 19501075

55. Redell JB, Zhao J, Dash PK (2011) Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J Neurosci Res 89: 212–221. doi: 10.1002/jnr.22539 21162128

56. Han Z, Chen F, Ge X, Tan J, Lei P, et al. (2014) miR-21 alleviated apoptosis of cortical neurons through promoting PTEN-Akt signaling pathway in vitro after experimental traumatic brain injury. Brain Res 1582: 12–20. doi: 10.1016/j.brainres.2014.07.045 25108037

57. Sandhir R, Gregory E, Berman NE (2014) Differential response of miRNA-21 and its targets after traumatic brain injury in aging mice. Neurochem Int.

58. Ge XT, Lei P, Wang HC, Zhang AL, Han ZL, et al. (2014) miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 4: 6718. doi: 10.1038/srep06718 25342226

59. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39: 493–506. doi: 10.1016/j.molcel.2010.07.023 20797623

60. Chaudhuri AD, Yelamanchili SV, Fox HS (2013) Combined fluorescent in situ hybridization for detection of microRNAs and immunofluorescent labeling for cell-type markers. Front Cell Neurosci 7: 160. doi: 10.3389/fncel.2013.00160 24065888

61. Li M, Xia Y, Gu Y, Zhang K, Lang Q, et al. (2010) MicroRNAome of porcine pre- and postnatal development. PLoS One 5: e11541. doi: 10.1371/journal.pone.0011541 20634961

62. Wei Z, Liu X, Feng T, Chang Y (2011) Novel and conserved micrornas in Dalian purple urchin (Strongylocentrotus nudus) identified by next generation sequencing. Int J Biol Sci 7: 180–192. 21383954

63. Meyer C, Grey F, Kreklywich CN, Andoh TF, Tirabassi RS, et al. (2011) Cytomegalovirus microRNA expression is tissue specific and is associated with persistence. J Virol 85: 378–389. doi: 10.1128/JVI.01900-10 20980502

64. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42: D68–73. doi: 10.1093/nar/gkt1181 24275495

65. Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17: 509–519. 11395427

66. Kayala MA, Baldi P (2012) Cyber-T web server: differential analysis of high-throughput data. Nucleic Acids Res 40: W553–559. doi: 10.1093/nar/gks420 22600740

67. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17: 879–887. 15908444

68. Zeringer E, Li M, Barta T, Schageman J, Pedersen KW, et al. (2013) Methods for the extraction and RNA profiling of exosomes. World J Methodol 3: 11–18. doi: 10.5662/wjm.v3.i1.11 25237619

69. Bobrie A, Colombo M, Krumeich S, Raposo G, Thery C (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles 1.

70. Beaudoin GM 3rd, Lee SH, Singh D, Yuan Y, Ng YG, et al. (2012) Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc 7: 1741–1754. doi: 10.1038/nprot.2012.099 22936216

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#