Vaccination Drives Changes in Metabolic and Virulence Profiles of
The bacterium Streptococcus pneumoniae is a major cause of life-threatening pneumonia, septicaemia and meningitis worldwide. Pneumococci are covered by a polysaccharide capsule of which there are over 90 distinct serotypes. Available vaccines target a small subset (either 7, 10 or 13) of these capsular serotypes but, following their introduction, increases in the relative amount of disease caused by non-vaccine serotypes have been observed in several countries. Here we offer an alternative explanation for this phenomenon to the traditional concept of Vaccine-Induced-Strain-Replacement whereby the removal of interference from vaccine strains allows non-vaccine strains to fill the niches left vacant by them. We show, instead, that vaccination induces genotypic changes among non-vaccine strains which can lead to an increase in both transmissibility and virulence. Using a mathematical model of genomic evolution, in which strains are split into antigenic, metabolic and virulence-associated components, we show that metabolic and virulence-associated components originally associated with vaccine serotypes become associated with non-vaccine serotypes following vaccination. We term this Vaccine-Induced-Metabolic-Shift and propose that it explains post-vaccine changes observed in pneumococcal population structure in a number of locations worldwide.
Vyšlo v časopise:
Vaccination Drives Changes in Metabolic and Virulence Profiles of. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1005034
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005034
Souhrn
The bacterium Streptococcus pneumoniae is a major cause of life-threatening pneumonia, septicaemia and meningitis worldwide. Pneumococci are covered by a polysaccharide capsule of which there are over 90 distinct serotypes. Available vaccines target a small subset (either 7, 10 or 13) of these capsular serotypes but, following their introduction, increases in the relative amount of disease caused by non-vaccine serotypes have been observed in several countries. Here we offer an alternative explanation for this phenomenon to the traditional concept of Vaccine-Induced-Strain-Replacement whereby the removal of interference from vaccine strains allows non-vaccine strains to fill the niches left vacant by them. We show, instead, that vaccination induces genotypic changes among non-vaccine strains which can lead to an increase in both transmissibility and virulence. Using a mathematical model of genomic evolution, in which strains are split into antigenic, metabolic and virulence-associated components, we show that metabolic and virulence-associated components originally associated with vaccine serotypes become associated with non-vaccine serotypes following vaccination. We term this Vaccine-Induced-Metabolic-Shift and propose that it explains post-vaccine changes observed in pneumococcal population structure in a number of locations worldwide.
Zdroje
1. Hausdorff WP, Feikin DR, Klugman KP. Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis. 2005;5(2):83–93. 15680778
2. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(6):3140–5. 9501229
3. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, et al. Rapid Pneumococcal Evolution in Response to Clinical Interventions. Science. 2011;331(6016):430–4. doi: 10.1126/science.1198545 21273480
4. Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. Journal of Infectious Diseases. 2003;187(9):1424–32. 12717624
5. Wyres KL, Lambertsen LM, Croucher NJ, McGee L, von Gottberg A, Linares J, et al. Pneumococcal Capsular Switching: A Historical Perspective. Journal of Infectious Diseases. 2013;207(3):439–49. doi: 10.1093/infdis/jis703 23175765
6. Pillai DR, Shahinas D, Buzina A, Pollock RA, Lau R, Khairnar K, et al. Genome-wide dissection of globally emergent multi-drug resistant serotype 19A Streptococcus pneumoniae. Bmc Genomics. 2009;10.
7. Beall BW, Gertz RE, Hulkower RL, Whitney CG, Moore MR, Brueggemann AB. Shifting Genetic Structure of Invasive Serotype 19A Pneumococci in the United States. Journal of Infectious Diseases. 2011;203(10):1360–8. doi: 10.1093/infdis/jir052 21398395
8. Hanage WP, Bishop CJ, Lee GM, Lipsitch M, Stevenson A, Rifas-Shiman SL, et al. Clonal replacement among 19A Streptococcus pneumoniae in Massachusetts, prior to 13 valent conjugate vaccination. Vaccine. 2011;29(48):8877–81. doi: 10.1016/j.vaccine.2011.09.075 21964059
9. Sharma D, Baughman W, Holst A, Thomas S, Jackson D, Carvalho MdG, et al. Pneumococcal Carriage and Invasive Disease in Children Before Introduction of the 13-valent Conjugate Vaccine: Comparison With the Era Before 7-valent Conjugate Vaccine. Pediatric Infectious Disease Journal. 2013;32(2):E45–E53. 23080290
10. Yildirim I, Stevenson A, Hsu KK, Pelton SI. Evolving picture of invasive pneumococcal disease in Massachusetts children: a comparison of disease in 2007–2009 with earlier periods. Pediatr Infect Dis J. 2012;31(10):1016–21. 22673142
11. Brueggemann AB, Pai R, Crook DW, Beall B. Vaccine escape recombinants emerge after pneumococcal vaccination in the united states. Plos Pathogens. 2007;3(11):1628–36.
12. Baek JY, Ko KS, Kim SH, Kang C-I, Chung DR, Peck KR, et al. Comparison of genotypes of Streptococcus pneumoniae serotypes 6A and 6B before and after the introduction of PCV7 vaccination in Korea. Diagnostic Microbiology and Infectious Disease. 2011;69(4):370–5. doi: 10.1016/j.diagmicrobio.2010.10.019. WOS:000288819700003. 21396531
13. Lipsitch M. Vaccination against colonizing bacteria with multiple serotypes. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(12):6571–6. 9177259
14. Cobey S, Lipsitch M. Niche and Neutral Effects of Acquired Immunity Permit Coexistence of Pneumococcal Serotypes. Science. 2012;335(6074):1376–80. doi: 10.1126/science.1215947 22383809
15. Bottomley C, Roca A, Hill PC, Greenwood B, Isham V. A mathematical model of serotype replacement in pneumococcal carriage following vaccination. J R Soc Interface. 2013;10(89):20130786. doi: 10.1098/rsif.2013.0786 24132203
16. Flasche S, Edmunds WJ, Miller E, Goldblatt D, Robertson C, Choi YH. The impact of specific and non-specific immunity on the ecology of Streptococcus pneumoniae and the implications for vaccination. Proc Biol Sci. 2013;280(1771):20131939. doi: 10.1098/rspb.2013.1939 24089337
17. Melegaro A, Choi YH, George R, Edmunds WJ, Miller E, Gay NJ. Dynamic models of pneumococcal carriage and the impact of the Heptavalent Pneumococcal Conjugate Vaccine on invasive pneumococcal disease. Bmc Infectious Diseases. 2010;10.
18. Van Effelterre T, Moore MR, Fierens F, Whitney CG, White L, Pelton SI, et al. A dynamic model of pneumococcal infection in the United States: Implications for prevention through vaccination. Vaccine. 2010;28(21):3650–60. doi: 10.1016/j.vaccine.2010.03.030 20359560
19. Temime L, Boelle P-Y, Opatowski L, Guillemot D. Impact of Capsular Switch on Invasive Pneumococcal Disease Incidence in a Vaccinated Population. Plos One. 2008;3(9).
20. Gupta S, Maiden MCJ, Feavers IM, Nee S, May RM & Anderson RM. The maintenance of strain structure in populations of recombining infectious agents. Nature Medicine 2(4): 437–442. 8597954
21. Buckee CO, Jolley KA, Recker M, Penman B, Kriz P, Gupta S, et al. Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(39):15082–7. doi: 10.1073/pnas.0712019105 18815379
22. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nature Genetics. 2013;45(6):656-+. doi: 10.1038/ng.2625 23644493
23. Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 2014;7(4):1104–15. doi: 10.1016/j.celrep.2014.03.070 24794435
24. Weinberger DM, Dagan R, Givon-Lavi N, Regev-Yochay G, Malley R, Lipsitch M. Epidemiologic evidence for serotype-specific acquired immunity to pneumococcal carriage. J Infect Dis. 2008;197(11):1511–8. doi: 10.1086/587941 18471062
25. Goldblatt D, Hussain M, Andrews N, Ashton L, Virta C, Melegaro A, et al. Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: A longitudinal household study. Journal of Infectious Diseases. 2005;192(3):387–93. 15995951
26. Hill PC, Cheung YB, Akisanya A, Sankareh K, Lahai G, Greenwood BM, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian infants: A longitudinal study. Clinical Infectious Diseases. 2008;46(6):807–14. doi: 10.1086/528688 18279039
27. Linke CM, Woodiga SA, Meyers DJ, Buckwalter CM, Salhi HE, King SJ. The ABC Transporter Encoded at the Pneumococcal Fructooligosaccharide Utilization Locus Determines the Ability To Utilize Long- and Short-Chain Fructooligosaccharides. Journal of Bacteriology. 2013;195(5):1031–41. doi: 10.1128/JB.01560-12 23264576
28. Higgins MA, Whitworth GE, El Warry N, Randriantsoa M, Samain E, Burke RD, et al. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases. Journal of Biological Chemistry. 2009;284(38):26161–73. doi: 10.1074/jbc.M109.024067 19608744
29. Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, et al. A Functional Genomics Approach to Establish the Complement of Carbohydrate Transporters in Streptococcus pneumoniae. Plos One. 2012;7(3).
30. Carvalho SM, Kuipers OP, Neves AR. Environmental and Nutritional Factors That Affect Growth and Metabolism of the Pneumococcal Serotype 2 Strain D39 and Its Nonencapsulated Derivative Strain R6. Plos One. 2013;8(3).
31. Fraser C, Hanage WP, Spratt BG. Neutral microepidemic evolution of bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(6):1968–73. 15684071
32. Croucher NJ, Kagedan L, Thompson CM, Parkhill J, Bentley SD, Finkelstein JA, Lipsitch M, Hanage WP. Selective and Genetic Constraints on Pneumococcal Serotype Switching. PLoS Genetics 11 (3), e1005095–e1005095 doi: 10.1371/journal.pgen.1005095 25826208
33. Feikin DR, Klugman KP. Historical changes in pneumococcal serogroup distribution: Implications for the era of pneumococcal conjugate vaccines. Clinical Infectious Diseases. 2002;35(5):547–55. 12173128
34. Jefferies JM, Smith AJ, Edwards GF, McMenamin J, Mitchell TJ, Clarke SC. Temporal analysis of invasive pneumococcal clones from Scotland illustrates fluctuations in diversity of serotype and genotype in the absence of pneumococcal conjugate vaccine. J Clin Microbiol. 2010;48(1):87–96. doi: 10.1128/JCM.01485-09 19923488
35. Ihekweazu CA, Dance DA, Pebody R, George RC, Smith MD, Waight P, et al. Trends in incidence of pneumococcal disease before introduction of conjugate vaccine: South West England, 1996–2005. Epidemiol Infect. 2008;136(8):1096–102. 17961282
36. Bagnoli F, Moschioni M, Donati C, Dimitrovska V, Ferlenghi I, Facciotti C, et al. A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. Journal of Bacteriology. 2008;190(15):5480–92. doi: 10.1128/JB.00384-08 18515415
37. Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci U S A. 2006;103(8):2857–62. 16481624
38. Regev-Yochay G, Hanage WP, Trzcinski K, Rifas-Shiman SL, Lee G, Bessolo A, et al. Re-emergence of the type 1 pilus among Streptococcus pneumoniae isolates in Massachusetts, USA. Vaccine. 2010;28(30):4842–6. doi: 10.1016/j.vaccine.2010.04.042 20434550
39. Zahner D, Gudlavalleti A, Stephens DS. Increase in Pilus Islet 2-encoded Pili among Streptococcus pneumoniae Isolates, Atlanta, Georgia, USA. Emerging Infectious Diseases. 2010;16(6):955–62. doi: 10.3201/eid1606.091820 20507746
40. Gherardi G, D'Ambrosio F, Visaggio D, Dicuonzo G, Del Grosso M, Pantosti A. Serotype and Clonal Evolution of Penicillin-Nonsusceptible Invasive Streptococcus pneumoniae in the 7-Valent Pneumococcal Conjugate Vaccine Era in Italy. Antimicrobial Agents and Chemotherapy. 2012;56(9):4965–8. doi: 10.1128/AAC.00830-12 22751537
41. Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. Bmc Bioinformatics. 2010;11.
42. Zhao JH. 2LD, GENECOUNTING and HAP: computer programs for linkage disequilibrium analysis. Bioinformatics. 2004;20(8):1325–6. 14871868
43. Gupta S, Ferguson NM, Anderson RM. Vaccination and the population structure of antigenically diverse pathogens that exchange genetic material. Proc Biol Sci. 1997;264(1387):1435–43. 9364784
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 7
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection
- N-acetylglucosamine Regulates Virulence Properties in Microbial Pathogens
- Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein
- RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion