HIV Reactivation from Latency after Treatment Interruption Occurs on Average Every 5-8 Days—Implications for HIV Remission
During treatment of HIV infection the virus persists in infected cells in a quiescent or ‘latent’ state. If treatment is stopped, then virus rebounds to detectable levels usually within 2–3 weeks. This is thought to occur due to release of infectious virus from a reservoir of long-lived latently infected cells. Reducing the number of latently infected cells should allow a prolonged period of HIV remission without antiviral treatment. A fundamental question is ‘how frequently does infectious virus emerge from the pool of latently infected cells?’, and thus how much would we need to reduce the number of latently infected cells to produce remission? Here we directly estimate the frequency of successful viral reactivation in four independent cohorts of patients undergoing treatment interruption. We find that active infection is initiated on average once every 5–8 days, considerably more slowly than previously thought. This has important implications for how much we need to reduce the number of latent cells in order to produce remission. Whereas previous analyses suggested that we would need to reduce the latent cell number 2000 fold to produce an average one-year remission, we show that reducing the latent cell number by 50–70 fold could achieve this aim.
Vyšlo v časopise:
HIV Reactivation from Latency after Treatment Interruption Occurs on Average Every 5-8 Days—Implications for HIV Remission. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1005000
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005000
Souhrn
During treatment of HIV infection the virus persists in infected cells in a quiescent or ‘latent’ state. If treatment is stopped, then virus rebounds to detectable levels usually within 2–3 weeks. This is thought to occur due to release of infectious virus from a reservoir of long-lived latently infected cells. Reducing the number of latently infected cells should allow a prolonged period of HIV remission without antiviral treatment. A fundamental question is ‘how frequently does infectious virus emerge from the pool of latently infected cells?’, and thus how much would we need to reduce the number of latently infected cells to produce remission? Here we directly estimate the frequency of successful viral reactivation in four independent cohorts of patients undergoing treatment interruption. We find that active infection is initiated on average once every 5–8 days, considerably more slowly than previously thought. This has important implications for how much we need to reduce the number of latent cells in order to produce remission. Whereas previous analyses suggested that we would need to reduce the latent cell number 2000 fold to produce an average one-year remission, we show that reducing the latent cell number by 50–70 fold could achieve this aim.
Zdroje
1. Deeks SG (2012) PERSPECTIVES. Nat Rev Immunol: 1–8. doi: 10.1038/nri3262 23197112
2. Wightman F, Ellenberg P, Churchill M, Lewin SR (2011) HDAC inhibitors in HIV. 90: 47–54. doi: 10.1038/icb.2011.95
3. Boehm D, Calvanese V, Dar RD, Xing S, Schroeder S, et al. (2013) BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 12: 452–462. doi: 10.4161/cc.23309 23255218
4. Rasmussen TA, Tolstrup M, Winckelmann A, Østergaard L, Søgaard OS (2013) Eliminating the latent HIV reservoir by reactivation strategies: advancing to clinical trials. vaccines 9: 790–799. doi: 10.4161/hv.23202
5. Archin NM, Eron JJ, Palmer S, Hartmann-Duff A, Martinson JA, et al. (2008) Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. AIDS 22: 1131–1135. doi: 10.1097/QAD.0b013e3282fd6df4 18525258
6. Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, et al. (2005) Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366: 549–555. doi: 10.1016/S0140-6736(05)67098-5 16099290
7. Elliott JH, Wightman F, Solomon A, Ghneim K, Ahlers J, et al. (2014) Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog 10: e1004473. doi: 10.1371/journal.ppat.1004473.s010 25393648
8. Rasmussen TA, Tolstrup M, Brinkmann C, Olesen R, Erikstrup C, et al. (2014) Panobinostat, a histone deacetylase inhibitor, for latent- virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. The Lancet HIV 1: e13–e21. doi: 10.1016/S2352-3018(14)70014-1
9. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, et al. (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487: 482–485. doi: 10.1038/nature11286 22837004
10. Archin NM, Bateson R, Tripathy MK, Crooks AM, Yang K-H, et al. (2014) HIV-1 Expression Within Resting CD4+ T Cells After Multiple Doses of Vorinostat. Journal of Infectious Diseases 210: 728–735. doi: 10.1093/infdis/jiu155 24620025
11. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, et al. (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183–188. doi: 10.1038/387183a0 9144289
12. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, et al. (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9: 727–728. doi: 10.1038/nm880 12754504
13. Ho Y-C, Shan L, Hosmane NN, Wang J, Laskey SB, et al. (2013) Replication-Competent Noninduced Proviruses in the Latent Reservoir Increase Barrier to HIV-1 Cure. Cell 155: 540–551. doi: 10.1016/j.cell.2013.09.020 24243014
14. Lewin SR, Deeks SG, Sinoussi FOB (2014) Towards a cure for HIV—are we making progress? Lancet 384: 209–211. doi: 10.1016/S0140-6736(14)61181-8 25042220
15. Bloch MT, Smith DE, Quan D, Kaldor JM, Zaunders JJ, et al. (2006) The role of hydroxyurea in enhancing the virologic control achieved through structured treatment interruption in primary HIV infection: final results from a randomized clinical trial (Pulse). J Acquir Immune Defic Syndr 42: 192–202. doi: 10.1097/01.qai.0000219779.50668.e6 16688094
16. Davey RT, Bhat N, Yoder C, Chun TW, Metcalf JA, et al. (1999) HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci USA 96: 15109–15114. 10611346
17. Fischer M, Hafner R, Schneider C, Trkola A, Joos B, et al. (2003) HIV RNA in plasma rebounds within days during structured treatment interruptions. AIDS 17: 195–199. doi: 10.1097/01.aids.0000042945.95433.4b 12545079
18. Hill AL, Rosenbloom DIS, Fu F, Nowak MA, Siliciano RF (2014) Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1406663111
19. Pennings PS (2012) Standing genetic variation and the evolution of drug resistance in HIV. PLoS Comput Biol 8: e1002527. doi: 10.1371/journal.pcbi.1002527 22685388
20. Archin NM, Vaidya NK, Kuruc JD, Liberty AL, Wiegand A, et al. (2012) Immediate antiviral therapy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infection. Proceedings of the National Academy of Sciences 109: 9523–9528. doi: 10.1073/pnas.1120248109 22645358
21. Conway JM, Perelson AS (2015) Post-treatment control of HIV infection. Proceedings of the National Academy of Sciences 112: 5467–5472. doi: 10.1073/pnas.1419162112 25870266
22. Williams JP, Hurst J, Stöhr W, Robinson N, Brown H, et al. (2014) HIV-1 DNA predicts disease progression and post-treatment virological control. Elife (Cambridge) 3: e03821. doi: 10.7554/eLife.03821 25217531
23. Luo R, Piovoso MJ, Martinez-Picado J, Zurakowski R (2012) HIV model parameter estimates from interruption trial data including drug efficacy and reservoir dynamics. PLoS ONE 7: e40198. doi: 10.1371/journal.pone.0040198 22815727
24. Pearson JE, Krapivsky P, Perelson AS (2011) Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions. PLoS Comput Biol 7: e1001058. doi: 10.1371/journal.pcbi.1001058.g011 21304934
25. Joos B, Fischer M, Kuster H, Pillai SK, Wong JK, et al. (2008) HIV rebounds from latently infected cells, rather than from continuing low-level replication. Proceedings of the National Academy of Sciences 105: 16725–16730. doi: 10.1073/pnas.0804192105 18936487
26. Whitney JB, Hill AL, Sanisetty S, Penaloza-MacMaster P, Liu J, et al. (2014) Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512: 74–77. doi: 10.1038/nature13594 25042999
27. Koelsch KK, Boesecke C, McBride K, Gelgor L, Fahey P, et al. (2011) Impact of Treatment with Raltegravir During Primary or Chronic HIV Infection on RNA Decay Characteristics and the HIV Viral Reservoir. AIDS. doi: 10.1097/QAD.0b013e32834b9658
28. Dinoso JB, Rabi SA, Blankson JN, Gama L, Mankowski JL, et al. (2009) A Simian Immunodeficiency Virus-Infected Macaque Model To Study Viral Reservoirs That Persist during Highly Active Antiretroviral Therapy. J Virol 83: 9247–9257. doi: 10.1128/JVI.00840-09 19570871
29. Persaud D, Gay H, Ziemniak C, Chen YH, Piatak M Jr, et al. (2013) Absence of Detectable HIV-1 Viremia after Treatment Cessation in an Infant. N Engl J Med 369: 1828–1835. doi: 10.1056/NEJMoa1302976 24152233
30. Henrich TJ, Hanhauser E, Marty FM, Sirignano MN, Keating S, et al. (2014) Antiretroviral-Free HIV-1 Remission and Viral Rebound After Allogeneic Stem Cell Transplantation. Ann Intern Med 161: 319. doi: 10.7326/M14-1027 25047577
31. Santangelo PJ, Rogers KA, Zurla C, Blanchard EL, Gumber S, et al. (2015) Whole-body immunoPet reveals active siV dynamics in viremic and antiretroviral therapy—treated macaques. Nat Meth: 1–9. doi: 10.1038/nmeth.3320
32. Rothenberger MK, Keele BF, Wietgrefe SW, Fletcher CV, Beilman GJ, et al. (2015) Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. Proceedings of the National Academy of Sciences: 201414926. doi: 10.1073/pnas.1414926112
33. Fukazawa Y, Lum R, Okoye AA, Park H, Matsuda K, et al. (2015) B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nature Publishing Group 21: 132–139. doi: 10.1038/nm.3781
34. Spivak AM, Andrade A, Eisele E, Hoh R, Bacchetti P, et al. (2014) A Pilot Study Assessing the Safety and Latency-Reversing Activity of Disulfiram in HIV-1-Infected Adults on Antiretroviral Therapy. Clin Infect Dis 58: 883–890. doi: 10.1093/cid/cit813 24336828
35. Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, et al. (2013) Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog 9: e1003174. doi: 10.1371/journal.ppat.1003174 23459007
36. Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nature Publishing Group 20: 425–429. doi: 10.1038/nm.3489
37. SMART Study Group, El-Sadr WM, Grund B, Neuhaus J, Babiker A, et al. (2008) Risk for opportunistic disease and death after reinitiating continuous antiretroviral therapy in patients with HIV previously receiving episodic therapy: a randomized trial. Ann Intern Med 149: 289–299. 18765698
38. Ruiz L, Carcelain G, Martinez-Picado J, Frost S, Marfil S, et al. (2001) HIV dynamics and T-cell immunity after three structured treatment interruptions in chronic HIV-1 infection. AIDS 15: F19–F27. 11416734
39. Rong L, Perelson AS (2009) Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput Biol 5: e1000533. doi: 10.1371/journal.pcbi.1000533 19834532
40. Margolis D, Bushman F (2014) Persistence by proliferation? Science 345: 143–144. doi: 10.1126/science.1257426 25013050
41. Pinkevych M, Chelimo K, Vulule J, Kazura JW, Moormann AM, et al. (2015) Time-to-infection by Plasmodium falciparum is largely determined by random factors. BMC Med 13: 19. doi: 10.1186/s12916-014-0252-9 25633459
42. Maldarelli F, Palmer S, King MS, Wiegand A, Polis MA, et al. (2007) ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog 3: e46. doi: 10.1371/journal.ppat.0030046 17411338
43. Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, et al. (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proceedings of the National Academy of Sciences 105: 3879–3884. doi: 10.1073/pnas.0800050105 18332425
44. Hosmer DW, Lemeshow S, May S (2008) Applied survival analysis: regression modeling of time-to-event data. 2nd ed. Hoboken NJ, editor Wiley-Interscience.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 7
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein
- N-acetylglucosamine Regulates Virulence Properties in Microbial Pathogens
- Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection
- RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion