Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection
Despite the prevalence of dengue virus infection and the heavy economic burden it puts on the endemic countries, the immunopathogenesis of dengue virus infection remains unclear. Plasma leakage in dengue hemorrhagic fever (DHF) develops not when the viremia is at its peak in infected patients but when viremia has been significantly reduced or cleared. This suggests that host immune response is responsible for the development DHF. The interactions of the viral factors with host factors which trigger the host immune responses are likely to play a significant role in the development of dengue diseases, thus are of great interests. In this study, we found that dengue NS1 protein activates TLR2 and TLR6, leading to increase proinflammatory cytokine production. In addition, the interaction of viral factor with TLR6 was found to play an important role in the manifestation of dengue virus infection. Our study provides new insights into the involvement of TLR6 in dengue virus infection and the potential of using TLR6 anatagonist in therapeutic treatment for DV infection.
Vyšlo v časopise:
Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1005053
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005053
Souhrn
Despite the prevalence of dengue virus infection and the heavy economic burden it puts on the endemic countries, the immunopathogenesis of dengue virus infection remains unclear. Plasma leakage in dengue hemorrhagic fever (DHF) develops not when the viremia is at its peak in infected patients but when viremia has been significantly reduced or cleared. This suggests that host immune response is responsible for the development DHF. The interactions of the viral factors with host factors which trigger the host immune responses are likely to play a significant role in the development of dengue diseases, thus are of great interests. In this study, we found that dengue NS1 protein activates TLR2 and TLR6, leading to increase proinflammatory cytokine production. In addition, the interaction of viral factor with TLR6 was found to play an important role in the manifestation of dengue virus infection. Our study provides new insights into the involvement of TLR6 in dengue virus infection and the potential of using TLR6 anatagonist in therapeutic treatment for DV infection.
Zdroje
1. Sabin AB (1952) Research on dengue during World War II. Am J Trop Med Hyg 1: 30–50. 14903434
2. Guzman MG, Kouri GP, Bravo J, Soler M, Vazquez S, et al. (1990) Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am J Trop Med Hyg 42: 179–184. 2316788
3. Halstead SB, Nimmannitya S, Cohen SN (1970) Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 42: 311–328. 5419206
4. Goncalvez AP, Engle RE, Claire M St, Purcell RH, Lai CJ (2007) Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci U S A 104: 9422–9427. 17517625
5. Guzman MG, Alvarez M, Rodriguez-Roche R, Bernardo L, Montes T, et al. (2007) Neutralizing antibodies after infection with dengue 1 virus. Emerg Infect Dis 13: 282–286. 17479892
6. Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11: 480–496. 9665979
7. Gubler DJ (1998) The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future. Ann Acad Med Singapore 27: 227–234. 9663316
8. Monath TP (1994) Dengue: the risk to developed and developing countries. Proc Natl Acad Sci U S A 91: 2395–2400. 8146129
9. Gubler DJ, Clark GG (1995) Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis 1: 55–57. 8903160
10. Back AT, Lundkvist A (2013) Dengue viruses—an overview. Infect Ecol Epidemiol 3.
11. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, et al. (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181: 2–9. 10608744
12. Libraty DH, Endy TP, Houng HS, Green S, Kalayanarooj S, et al. (2002) Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis 185: 1213–1221. 12001037
13. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, et al. (1997) Dengue in the early febrile phase: viremia and antibody responses. J Infect Dis 176: 322–330. 9237696
14. Burke DS, Nisalak A, Johnson DE, Scott RM (1988) A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg 38: 172–180. 3341519
15. Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S, et al. (1984) Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol 120: 653–669. 6496446
16. Thein S, Aung MM, Shwe TN, Aye M, Zaw A, et al. (1997) Risk factors in dengue shock syndrome. Am J Trop Med Hyg 56: 566–572. 9180609
17. Reis SRNI, Sampaio ALF, Henriques MDM, Gandini M, Azeredo EL, et al. (2007) An in vitro model for dengue virus infection that exhibits human monocyte infection, multiple cytokine production and dexamethasone immunomodulation. Memorias Do Instituto Oswaldo Cruz 102: 983–990. 18209938
18. Chaturvedi UC, Raghupathy R, Pacsa AS, Elbishbishi EA, Agarwal R, et al. (1999) Shift from a Th1-type response to Th2-type in dengue haemorrhagic fever. Current Science 76: 63–69.
19. Azeredo EL, Neves-Souza PC, Alvarenga AR, Reis SR, Torrentes-Carvalho A, et al. Differential regulation of toll-like receptor-2, toll-like receptor-4, CD16 and human leucocyte antigen-DR on peripheral blood monocytes during mild and severe dengue fever. Immunology 130: 202–216. doi: 10.1111/j.1365-2567.2009.03224.x 20113369
20. Hober D, Poli L, Roblin B, Gestas P, Chungue E, et al. (1993) Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am J Trop Med Hyg 48: 324–331. 8470771
21. Chareonsirisuthigul T, Kalayanarooj S, Ubol S (2007) Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol 88: 365–375. 17251552
22. Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, Tangthawornchaikul N, et al. (2003) Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9: 921–927. 12808447
23. Halstead SB, Rojanasuphot S, Sangkawibha N (1983) Original antigenic sin in dengue. Am J Trop Med Hyg 32: 154–156. 6824120
24. Mady BJ, Erbe DV, Kurane I, Fanger MW, Ennis FA (1991) Antibody-dependent enhancement of dengue virus infection mediated by bispecific antibodies against cell surface molecules other than Fc gamma receptors. J Immunol 147: 3139–3144. 1680925
25. Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13: 816–825. 16410796
26. Akira S (2006) TLR signaling. Curr Top Microbiol Immunol 311: 1–16. 17048703
27. Barton GM (2007) Viral recognition by Toll-like receptors. Semin Immunol 19: 33–40. 17336545
28. Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11: 604–615. doi: 10.1111/j.1462-5822.2008.01277.x 19134117
29. Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, et al. (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177: 7114–7121. 17082628
30. Chen J, Ng MM, Chu JJ (2008) Molecular profiling of T-helper immune genes during dengue virus infection. Virol J 5: 165. doi: 10.1186/1743-422X-5-165 19117515
31. Nakao Y, Funami K, Kikkawa S, Taniguchi M, Nishiguchi M, et al. (2005) Surface-expressed TLR6 participates in the recognition of diacylated lipopeptide and peptidoglycan in human cells. J Immunol 174: 1566–1573. 15661917
32. Chang S, Dolganiuc A, Szabo G (2007) Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J Leukoc Biol 82: 479–487. 17595379
33. Murawski MR, Bowen GN, Cerny AM, Anderson LJ, Haynes LM, et al. (2009) Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J Virol 83: 1492–1500. doi: 10.1128/JVI.00671-08 19019963
34. Boehme KW, Compton T (2004) Innate sensing of viruses by toll-like receptors. J Virol 78: 7867–7873. 15254159
35. Mogensen TH, Paludan SR (2005) Reading the viral signature by toll-like receptors and other pattern recognition receptors. Journal of Molecular Medicine-Jmm 83: 180–192.
36. Siednienko J, Miggin SM (2009) Expression analysis of the Toll-like receptors in human peripheral blood mononuclear cells. Methods Mol Biol 517: 3–14. doi: 10.1007/978-1-59745-541-1_1 19378036
37. Komatsuda A, Wakui H, Iwamoto K, Ozawa M, Togashi M, et al. (2008) Up-regulated expression of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol 152: 482–487. doi: 10.1111/j.1365-2249.2008.03646.x 18373699
38. Salomao R, Brunialti MK, Gomes NE, Mendes ME, Diaz RS, et al. (2009) Toll-like receptor pathway signaling is differently regulated in neutrophils and peripheral mononuclear cells of patients with sepsis, severe sepsis, and septic shock. Crit Care Med 37: 132–139. doi: 10.1097/CCM.0b013e318192fbaf 19050613
39. Liu Y, Wang Y, Yamakuchi M, Isowaki S, Nagata E, et al. (2001) Upregulation of toll-like receptor 2 gene expression in macrophage response to peptidoglycan and high concentration of lipopolysaccharide is involved in NF-kappa b activation. Infection and Immunity 69: 2788–2796. 11292690
40. Tanabe M, Kurita-Taniguchi M, Takeuchi K, Takeda M, Ayata M, et al. (2003) Mechanism of up-regulation of human Toll-like receptor 3 secondary to infection of measles virus-attenuated strains. Biochem Biophys Res Commun 311: 39–48. 14575692
41. Jersmann HP (2005) Time to abandon dogma: CD14 is expressed by non-myeloid lineage cells. Immunol Cell Biol 83: 462–467. 16174094
42. Ziegler-Heitbrock L (2007) The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 81: 584–592. 17135573
43. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, et al. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97: 13766–13771. 11095740
44. Farhat K, Riekenberg S, Heine H, Debarry J, Lang R, et al. (2008) Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol 83: 692–701. 18056480
45. Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, et al. (2006) Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 281: 31002–31011. 16880211
46. Quintanilla-Martinez L, Preffer F, Rubin D, Ferry JA, Harris NL (1994) CD20+ T-cell lymphoma. Neoplastic transformation of a normal T-cell subset. Am J Clin Pathol 102: 483–489. 7524302
47. Wilk E, Witte T, Marquardt N, Horvath T, Kalippke K, et al. (2009) Depletion of functionally active CD20+ T cells by rituximab treatment. Arthritis and Rheumatism 60: 3563–3571. doi: 10.1002/art.24998 19950291
48. Hultin LE, Hausner MA, Hultin PM, Giorgi JV (1993) CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes. Cytometry 14: 196–204. 7679964
49. Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, et al. (2002) Enzyme-linked immunosorbent assay specific to Dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol 40: 376–381. 11825945
50. Farhat K, Sauter KS, Brcic M, Frey J, Ulmer AJ, et al. (2008) The response of HEK293 cells transfected with bovine TLR2 to established pathogen-associated molecular patterns and to bacteria causing mastitis in cattle. Vet Immunol Immunopathol 125: 326–336. doi: 10.1016/j.vetimm.2008.05.026 18621422
51. Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S, et al. (2009) MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog 5: e1000474. doi: 10.1371/journal.ppat.1000474 19521507
52. Garcia-Rivera EJ, Rigau-Perez JG (2002) Encephalitis and dengue. Lancet 360: 261.
53. Johnson AJ, Roehrig JT (1999) New mouse model for dengue virus vaccine testing. J Virol 73: 783–786. 9847388
54. Wong KL, Chen W, Balakrishnan T, Toh YX, Fink K, et al. (2012) Susceptibility and response of human blood monocyte subsets to primary dengue virus infection. PLoS One 7: e36435. doi: 10.1371/journal.pone.0036435 22574162
55. Fink K, Ng C, Nkenfou C, Vasudevan SG, van Rooijen N, et al. (2009) Depletion of macrophages in mice results in higher dengue virus titers and highlights the role of macrophages for virus control. European Journal of Immunology 39: 2809–2821. doi: 10.1002/eji.200939389 19637226
56. Blackley S, Kou Z, Chen H, Quinn M, Rose RC, et al. (2007) Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro. J Virol 81: 13325–13334. 17928355
57. Hotta H, Wiharta AS, Hotta S, Homma M (1984) Dengue type 2 virus infection in human peripheral blood monocyte cultures. Microbiol Immunol 28: 1099–1109. 6521666
58. Eberl M, Roberts GW, Meuter S, Williams JD, Topley N, et al. (2009) A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog 5: e1000308. doi: 10.1371/journal.ppat.1000308 19229322
59. He Y, Wu K, Hu Y, Sheng L, Tie R, et al. (2014) gammadelta T cell and other immune cells crosstalk in cellular immunity. J Immunol Res 2014: 960252. doi: 10.1155/2014/960252 24741636
60. Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117: 979–987; quiz 988. 16675322
61. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nature Immunology 5: 987–995. 15454922
62. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, et al. (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24: 801–812. 16782035
63. Okamoto M, Hirai H, Taniguchi K, Shimura K, Inaba T, et al. (2009) Toll-like receptors (TLRs) are expressed by myeloid leukaemia cell lines, but fail to trigger differentiation in response to the respective TLR ligands. Br J Haematol 147: 585–587. doi: 10.1111/j.1365-2141.2009.07858.x 19673881
64. Zarember KA, Godowski PJ (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168: 554–561. 11777946
65. Shuto T, Imasato A, Jono H, Sakai A, Xu H, et al. (2002) Glucocorticoids synergistically enhance nontypeable Haemophilus influenzae-induced Toll-like receptor 2 expression via a negative cross-talk with p38 MAP kinase. J Biol Chem 277: 17263–17270. 11867630
66. Johnson CM, Tapping RI (2007) Microbial products stimulate human Toll-like receptor 2 expression through histone modification surrounding a proximal NF-kappaB-binding site. J Biol Chem 282: 31197–31205. 17728249
67. Wang T, Lafuse WP, Takeda K, Akira S, Zwilling BS (2002) Rapid chromatin remodeling of Toll-like receptor 2 promoter during infection of macrophages with Mycobacterium avium. J Immunol 169: 795–801. 12097382
68. Chamorro S, Garcia-Vallejo JJ, Unger WW, Fernandes RJ, Bruijns SC, et al. (2009) TLR triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program. J Immunol 183: 2984–2994. doi: 10.4049/jimmunol.0801155 19648269
69. Restrepo BN, Isaza DM, Salazar CL, Ramirez R, Ospina M, et al. (2008) Serum levels of interleukin-6, tumor necrosis factor-alpha and interferon-gamma in infants with and without dengue. Rev Soc Bras Med Trop 41: 6–10.
70. Pinto LM, Oliveira SA, Braga EL, Nogueira RM, Kubelka CF (1999) Increased pro-inflammatory cytokines (TNF-alpha and IL-6) and anti-inflammatory compounds (sTNFRp55 and sTNFRp75) in Brazilian patients during exanthematic dengue fever. Mem Inst Oswaldo Cruz 94: 387–394.
71. Fernandez-Mestre MT, Gendzekhadze K, Rivas-Vetencourt P, Layrisse Z (2004) TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue Antigens 64: 469–472. 15361124
72. Lei HY, Yeh TM, Liu HS, Lin YS, Chen SH, et al. (2001) Immunopathogenesis of dengue virus infection. J Biomed Sci 8: 377–388. 11549879
73. Tracey KJ, Cerami A (1994) Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 45: 491–503. 8198398
74. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327: 291–295. doi: 10.1126/science.1183021 20075244
75. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637–650. doi: 10.1016/j.immuni.2011.05.006 21616434
76. Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, et al. (2002) High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 186: 1165–1168. 12355369
77. Gutsche I, Coulibaly F, Voss JE, Salmon J, d'Alayer J, et al. (2011) Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc Natl Acad Sci U S A 108: 8003–8008. doi: 10.1073/pnas.1017338108 21518917
78. Somnuke P, Hauhart RE, Atkinson JP, Diamond MS, Avirutnan P (2011) N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology 413: 253–264. doi: 10.1016/j.virol.2011.02.022 21429549
79. Lin YL, Liao CL, Chen LK, Yeh CT, Liu CI, et al. (1998) Study of Dengue virus infection in SCID mice engrafted with human K562 cells. J Virol 72: 9729–9737. 9811707
80. Wu SJ, Hayes CG, Dubois DR, Windheuser MG, Kang YH, et al. (1995) Evaluation of the severe combined immunodeficient (SCID) mouse as an animal model for dengue viral infection. Am J Trop Med Hyg 52: 468–476. 7771614
81. Huang KJ, Li SY, Chen SC, Liu HS, Lin YS, et al. (2000) Manifestation of thrombocytopenia in dengue-2-virus-infected mice. Journal of General Virology 81: 2177–2182. 10950974
82. Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, et al. (2004) Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78: 2701–2710. 14990690
83. Rivest S (2009) Regulation of innate immune responses in the brain. Nature Reviews Immunology 9: 429–439. doi: 10.1038/nri2565 19461673
84. Rivest S (2003) Molecular insights on the cerebral innate immune system. Brain Behav Immun 17: 13–19. 12615045
85. Rivest S (2006) Cannabinoids in microglia: a new trick for immune surveillance and neuroprotection. Neuron 49: 4–8. 16387633
86. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61: 1013–1021. 12430718
87. McKimmie CS, Fazakerley JK (2005) In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. Journal of Neuroimmunology 169: 116–125. 16146656
88. Elahi S, Ertelt JM, Kinder JM, Jiang TT, Zhang X, et al. (2013) Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504: 158–162. doi: 10.1038/nature12675 24196717
89. Zaghouani H, Hoeman CM, Adkins B (2009) Neonatal immunity: faulty T-helpers and the shortcomings of dendritic cells. Trends Immunol 30: 585–591. doi: 10.1016/j.it.2009.09.002 19846341
90. Adkins B, Leclerc C, Marshall-Clarke S (2004) Neonatal adaptive immunity comes of age. Nature Reviews Immunology 4: 553–564. 15229474
91. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, et al. (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8: S7–16. doi: 10.1038/nrmicro2460 21079655
92. Araki K, Gangappa S, Dillehay DL, Rouse BT, Larsen CP, et al. (2010) Pathogenic virus-specific T cells cause disease during treatment with the calcineurin inhibitor FK506: implications for transplantation. Journal of Experimental Medicine 207: 2355–2367. doi: 10.1084/jem.20100124 20921283
93. Atrasheuskaya A, Petzelbauer P, Fredeking TM, Ignatyev G (2003) Anti-TNF antibody treatment reduces mortality in experimental dengue virus infection. FEMS Immunol Med Microbiol 35: 33–42. 12589955
94. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, et al. (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933–940. 11431423
95. Sharma RK, Sodhi A, Batra HV (2005) Involvement of TLR6/1 in rLcrV-mediated immunomodulation of murine peritoneal macrophages in vitro. Mol Immunol 42: 695–701. 15781113
96. Court N, Vasseur V, Vacher R, Fremond C, Shebzukhov Y, et al. (2010) Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. J Immunol 184: 7057–7070. doi: 10.4049/jimmunol.1000164 20488784
97. Savva A, Roger T (2013) Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol 4: 387. doi: 10.3389/fimmu.2013.00387 24302927
98. Dennehy KM, Ferwerda G, Faro-Trindade I, Pyz E, Willment JA, et al. (2008) Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. European Journal of Immunology 38: 500–506. doi: 10.1002/eji.200737741 18200499
99. Erridge C (2010) Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 87: 989–999. doi: 10.1189/jlb.1209775 20179153
100. Marty AM, Jahrling PB, Geisbert TW (2006) Viral hemorrhagic fevers. Clin Lab Med 26: 345–386, viii. 16815457
101. Atrasheuskaya AV, Fredeking TM, Ignatyev GM (2003) Changes in immune parameters and their correction in human cases of tick-borne encephalitis. Clin Exp Immunol 131: 148–154. 12519399
102. Bethell DB, Flobbe K, Cao XT, Day NP, Pham TP, et al. (1998) Pathophysiologic and prognostic role of cytokines in dengue hemorrhagic fever. J Infect Dis 177: 778–782. 9498463
103. Bozza FA, Cruz OG, Zagne SM, Azeredo EL, Nogueira RM, et al. (2008) Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis 8: 86. doi: 10.1186/1471-2334-8-86 18578883
104. O'Neill LA (2003) Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr Opin Pharmacol 3: 396–403. 12901949
105. Romagne F (2007) Current and future drugs targeting one class of innate immunity receptors: the Toll-like receptors. Drug Discov Today 12: 80–87. 17198976
106. Hennessy EJ, Parker AE, O'Neill LA (2010) Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 9: 293–307. doi: 10.1038/nrd3203 20380038
107. Gearing AJ (2007) Targeting toll-like receptors for drug development: a summary of commercial approaches. Immunol Cell Biol 85: 490–494. 17667933
108. Sun S, Rao NL, Venable J, Thurmond R, Karlsson L (2007) TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm Allergy Drug Targets 6: 223–235. 18220957
109. Chen K, Huang J, Gong W, Iribarren P, Dunlop NM, et al. (2007) Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol 7: 1271–1285. 17673142
110. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, et al. (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. Journal of Experimental Medicine 205: 3007–3018. doi: 10.1084/jem.20081165 19064698
111. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, et al. (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109: E2110–2116. doi: 10.1073/pnas.1209414109 22753494
112. He X, Jing Z, Cheng G (2014) MicroRNAs: new regulators of Toll-like receptor signalling pathways. Biomed Res Int 2014: 945169. doi: 10.1155/2014/945169 24772440
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 7
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection
- N-acetylglucosamine Regulates Virulence Properties in Microbial Pathogens
- Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein
- RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion