Comparative Phenotypic Analysis of the Major Fungal Pathogens and
Candida species are among the most common causes of fungal infection worldwide. Infections can be both community-based and hospital-acquired, and are particularly associated with immunocompromised individuals. Candida albicans is the most commonly isolated species and is the best studied. However, other species are becoming of increasing concern. Candida parapsilosis causes outbreaks of infection in neonatal wards, and is one of the few Candida species that is transferred from the hands of healthcare workers. C. parapsilosis, like C. albicans, grows as biofilms (cell communities) on the surfaces of indwelling medical devices like feeding tubes. We describe here the construction of a set of tools that allow us to characterize the virulence properties of C. parapsilosis, and in particular its ability to grow as biofilms. We find that some of the regulatory mechanisms are shared with C. albicans, but others are unique to each species. Our tools, based on selectively deleting regulatory genes, will provide a major resource to the fungal research community.
Vyšlo v časopise:
Comparative Phenotypic Analysis of the Major Fungal Pathogens and. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004365
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004365
Souhrn
Candida species are among the most common causes of fungal infection worldwide. Infections can be both community-based and hospital-acquired, and are particularly associated with immunocompromised individuals. Candida albicans is the most commonly isolated species and is the best studied. However, other species are becoming of increasing concern. Candida parapsilosis causes outbreaks of infection in neonatal wards, and is one of the few Candida species that is transferred from the hands of healthcare workers. C. parapsilosis, like C. albicans, grows as biofilms (cell communities) on the surfaces of indwelling medical devices like feeding tubes. We describe here the construction of a set of tools that allow us to characterize the virulence properties of C. parapsilosis, and in particular its ability to grow as biofilms. We find that some of the regulatory mechanisms are shared with C. albicans, but others are unique to each species. Our tools, based on selectively deleting regulatory genes, will provide a major resource to the fungal research community.
Zdroje
1. Lachance M-A, Boekhout T, Scorzetti G, Fell JW, Kurtzmann CP (2011) Candida Berkhout (1923). In: Kurtzman CP, Fell JW, Boekhout T, editors. The Yeasts, a Taxonomic Study. 5th ed. Amsterdam: Elsevier. pp. 987–1278.
2. FitzpatrickDA, LogueME, StajichJE, ButlerG (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6: 99.
3. WongS, FaresMA, ZimmermannW, ButlerG, WolfeKH (2003) Evidence from comparative genomics for a complete sexual cycle in the ‘asexual’ pathogenic yeast Candida glabrata. Genome Biol 4: R10.
4. SeervaiRN, JonesSKJr, HirakawaMP, PormanAM, BennettRJ (2013) Parasexuality and ploidy change in Candida tropicalis. Eukaryot Cell 12: 1629–1640.
5. HickmanMA, ZengG, ForcheA, HirakawaMP, AbbeyD, et al. (2013) The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature 494: 55–59.
6. SherwoodRK, ScadutoCM, TorresSE, BennettRJ (2014) Convergent evolution of a fused sexual cycle promotes the haploid lifestyle. Nature 506: 387–390.
7. SantosMA, GomesAC, SantosMC, CarretoLC, MouraGR (2011) The genetic code of the fungal CTG clade. C R Biol 334: 607–611.
8. Lass-FlorlC (2009) The changing face of epidemiology of invasive fungal disease in Europe. Mycoses 52: 197–205.
9. PfallerMA, DiekemaDJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20: 133–163.
10. PfallerMA, CastanheiraM, MesserSA, MoetGJ, JonesRN (2010) Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008–2009). Diagn Microbiol Infect Dis 68: 278–283.
11. MayerFL, WilsonD, HubeB (2013) Candida albicans pathogenicity mechanisms. Virulence 4: 119–128.
12. SiH, HerndayAD, HirakawaMP, JohnsonAD, BennettRJ (2013) Candida albicans white and opaque cells undergo distinct programs of filamentous growth. PLoS Pathog 9: e1003210.
13. PormanAM, HirakawaMP, JonesSK, WangN, BennettRJ (2013) MTL-independent phenotypic switching in Candida tropicalis and a dual role for Wor1 in regulating switching and filamentation. PLoS Genet 9: e1003369.
14. XieJ, DuH, GuanG, TongY, KourkoumpetisTK, et al. (2012) N-Acetylglucosamine induces White-to-Opaque switching and mating in Candida tropicalis, providing new insights into adaptation and fungal sexual evolution. Eukaryot Cell 11: 773–782.
15. PammiM, HollandL, ButlerG, GacserA, BlissJM (2013) Candida parapsilosis is a significant neonatal pathogen: a systematic review and meta-analysis. Pediatr Infect Dis J 32: e206–216.
16. ButlerG (2010) Fungal sex and pathogenesis. Clin Microbiol Rev 23: 140–159.
17. SaiS, HollandL, McGeeCF, LynchDB, ButlerG (2011) Evolution of mating within the Candida parapsilosis species group. Eukaryot Cell 10: 578–587.
18. ConnollyLA, RiccombeniA, GrozerZ, HollandLM, LynchDB, et al. (2013) The APSES transcription factor Efg1 is a global regulator that controls morphogenesis and biofilm formation in Candida parapsilosis. Mol Microbiol 90: 36–53.
19. BarchiesiF, CaggianoG, Falconi Di FrancescoL, MontagnaMT, BarbutiS, et al. (2004) Outbreak of fungemia due to Candida parapsilosis in a pediatric oncology unit. Diagn Microbiol Infect Dis 49: 269–271.
20. ClarkTA, SlavinskiSA, MorganJ, LottT, Arthington-SkaggsBA, et al. (2004) Epidemiologic and molecular characterization of an outbreak of Candida parapsilosis bloodstream infections in a community hospital. J Clin Microbiol 42: 4468–4472.
21. DiazGranadosCA, MartinezA, DeazaC, ValderramaS (2008) An outbreak of Candida spp. bloodstream infection in a tertiary care center in Bogota, Colombia. Braz J Infect Dis 12: 390–394.
22. DizbayM, KalkanciA, SezerBE, AktasF, AydoganS, et al. (2008) Molecular investigation of a fungemia outbreak due to Candida parapsilosis in an intensive care unit. Braz J Infect Dis 12: 395–399.
23. LevinAS, CostaSF, MussiNS, BassoM, SintoSI, et al. (1998) Candida parapsilosis fungemia associated with implantable and semi-implantable central venous catheters and the hands of healthcare workers. Diagn Microbiol Infect Dis 30: 243–249.
24. van AsbeckEC, HuangYC, MarkhamAN, ClemonsKV, StevensDA (2007) Candida parapsilosis fungemia in neonates: genotyping results suggest healthcare workers hands as source, and review of published studies. Mycopathologia 164: 287–293.
25. AlmiranteB, RodriguezD, Cuenca-EstrellaM, AlmelaM, SanchezF, et al. (2006) Epidemiology, risk factors, and prognosis of Candida parapsilosis bloodstream infections: case-control population-based surveillance study of patients in Barcelona, Spain, from 2002 to 2003. J Clin Microbiol 44: 1681–1685.
26. ClerihewL, LamagniTL, BrocklehurstP, McGuireW (2007) Candida parapsilosis infection in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 92: F127–129.
27. KuhnDM, ChandraJ, MukherjeePK, GhannoumMA (2002) Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70: 878–888.
28. SilvaS, HenriquesM, MartinsA, OliveiraR, WilliamsD, et al. (2009) Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol 47: 681–689.
29. BlankenshipJR, MitchellAP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9: 588–594.
30. SeneviratneCJ, JinL, SamaranayakeLP (2008) Biofilm lifestyle of Candida: a mini review. Oral Dis 14: 582–590.
31. RamageG, MowatE, JonesB, WilliamsC, Lopez-RibotJ (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35: 340–355.
32. SellamA, Al-NiemiT, McInnerneyK, BrumfieldS, NantelA, et al. (2009) A Candida albicans early stage biofilm detachment event in rich medium. BMC Microbiol 9: 25.
33. PannanusornS, FernandezV, RomlingU (2013) Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses 56: 264–272.
34. KuhnDM, ChandraJ, MukherjeePK, GhannoumMA (2002) Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70: 878–888.
35. DingC, ButlerG (2007) Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. Eukaryot Cell 6: 1310–1319.
36. GacserA, TrofaD, SchaferW, NosanchukJD (2007) Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest 117: 3049–3058.
37. FinkelJS, MitchellAP (2011) Genetic control of Candida albicans biofilm development. Nature Rev Microbiol 9: 109–118.
38. NobileCJ, MitchellAP (2006) Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 8: 1382–1391.
39. NobileCJ, FoxEP, NettJE, SorrellsTR, MitrovichQM, et al. (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148: 126–138.
40. FinkelJS, XuW, HuangD, HillEM, DesaiJV, et al. (2012) Portrait of Candida albicans adherence regulators. PLoS Pathog 8: e1002525.
41. DingC, VidanesGM, MaguireSL, GuidaA, SynnottJM, et al. (2011) Conserved and divergent roles of Bcr1 and CFEM proteins in Candida parapsilosis and Candida albicans. PLoS ONE 6: e28151.
42. DavisDA, BrunoVM, LozaL, FillerSG, MitchellAP (2002) Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162: 1573–1581.
43. HomannOR, DeaJ, NobleSM, JohnsonAD (2009) A phenotypic profile of the Candida albicans regulatory network. PLoS Genet 5: e1000783.
44. NobileCJ, MitchellAP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15: 1150–1155.
45. NobleSM, JohnsonAD (2005) Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell 4: 298–309.
46. FitzpatrickDA, O'GaoraP, ByrneKP, ButlerG (2010) Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser. BMC Genomics 11: 290.
47. MaguireSL, OheigeartaighSS, ByrneKP, SchroderMS, O'GaoraP, et al. (2013) Comparative genome analysis and gene finding in Candida species using CGOB. Mol Biol Evol 30: 1281–1291.
48. BanerjeeM, ThompsonDS, LazzellA, CarlislePL, PierceC, et al. (2008) UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell 19: 1354–1365.
49. Alonso-MongeR, Navarro-GarciaF, RomanE, NegredoAI, EismanB, et al. (2003) The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2: 351–361.
50. BaekYU, LiM, DavisDA (2008) Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. Eukaryot Cell 7: 1168–1179.
51. ChenC, PandeK, FrenchSD, TuchBB, NobleSM (2011) An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 10: 118–135.
52. HootSJ, OliverBG, WhiteTC (2008) Candida albicans UPC2 is transcriptionally induced in response to antifungal drugs and anaerobicity through Upc2p-dependent and -independent mechanisms. Microbiology 154: 2748–2756.
53. SynnottJM, GuidaA, Mulhern-HaugheyS, HigginsDG, ButlerG (2010) Regulation of the hypoxic response in Candida albicans. Eukaryot Cell 9: 1734–1746.
54. DrakulicT, TempleMD, GuidoR, JarolimS, BreitenbachM, et al. (2005) Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res 5: 1215–1228.
55. ZhaoH, EideDJ (1997) Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae. Mol Cell Biol 17: 5044–5052.
56. ThieleDJ (1988) ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol 8: 2745–2752.
57. OlesenJT, GuarenteL (1990) The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: model for the HAP2/3/4 complex. Genes Dev 4: 1714–1729.
58. LambTM, MitchellAP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23: 677–686.
59. VikA, RineJ (2001) Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 21: 6395–6405.
60. ChenC, PandeK, FrenchSD, TuchBB, NobleSM (2011) An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 10: 118–135.
61. GuidaA, LindstadtC, MaguireSL, DingC, HigginsDG, et al. (2011) Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis. BMC Genomics 12: 628.
62. MacPhersonS, AkacheB, WeberS, De DekenX, RaymondM, et al. (2005) Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 49: 1745–1752.
63. RossignolT, DingC, GuidaA, d'EnfertC, HigginsDG, et al. (2009) Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot Cell 8: 550–559.
64. WeissmanZ, KornitzerD (2004) A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53: 1209–1220.
65. WeissmanZ, ShemerR, ConibearE, KornitzerD (2008) An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Mol Microbiol 69: 201–217.
66. PuigS, AskelandE, ThieleDJ (2005) Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120: 99–110.
67. PuigS, VergaraSV, ThieleDJ (2008) Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell Metab 7: 555–564.
68. KellyMT, MacCallumDM, ClancySD, OddsFC, BrownAJ, et al. (2004) The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol Microbiol 53: 969–983.
69. AndesD, NettJ, OschelP, AlbrechtR, MarchilloK, et al. (2004) Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 72: 6023–6031.
70. SellamA, van Het HoogM, TebbjiF, BeaurepaireC, WhitewayM, et al. (2014) Modeling the transcriptional regulatory network that controls the early hypoxic response in Candida albicans. Eukaryot Cell 13: 675–90 doi: 10.1128/EC.00292-13
71. MericoD, IsserlinR, StuekerO, EmiliA, BaderGD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 5: e13984.
72. Garcia-SanchezS, AubertS, IraquiI, JanbonG, GhigoJM, et al. (2004) Candidaalbicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3: 536–545.
73. Butler G, Lorenz M, Gow NAR (2012) Evolution and genomics of the pathogenic Candida species complex. In: Sibley DL, Howlett BK, Heitman J, editors. Evolution of virulence in eukaryotic microbes: John Wiley & Sons, Inc. pp. 404–421.
74. EnrightAJ, Van DongenS, OuzounisCA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30: 1575–1584.
75. PalkovaZ, DevauxF, IcicovaM, MinarikovaL, Le CromS, et al. (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13: 3901–3914.
76. LubkowitzMA, HauserL, BreslavM, NaiderF, BeckerJM (1997) An oligopeptide transport gene from Candida albicans. Microbiology 143: 387–396.
77. CaoYY, CaoYB, XuZ, YingK, LiY, et al. (2005) cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49: 584–589.
78. De GrootPW, HellingwerfKJ, KlisFM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20: 781–796.
79. MaguireSL, WangC, HollandLM, BrunelF, NeuvegliseC, et al. (2014) Zinc finger transcription factors displaced SREBP proteins as the major sterol regulators during Saccharomycotina evolution. PLoS Genet 10: e1004076.
80. LaneS, BirseC, ZhouS, MatsonR, LiuH (2001) DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276: 48988–48996.
81. LaneS, ZhouS, PanT, DaiQ, LiuH (2001) The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1. Mol Cell Biol 21: 6418–6428.
82. BienCM, EspenshadePJ (2010) Sterol regulatory element binding proteins in fungi: hypoxic transcription factors linked to pathogenesis. Eukaryot Cell 9: 352–359.
83. ButlerG (2013) Hypoxia and gene expression in eukaryotic microbes. Ann Rev Microbiol 67: 291–312.
84. Di RienziSC, CollingwoodD, RaghuramaMK, BrewerBJ (2009) Fragile genomic sites are associated with origins of replication. Gen Biol Evol 2009: 350–363.
85. NelissenB, De WachterR, GoffeauA (1997) Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Rev 21: 113–134.
86. PannanusornS, Ramirez-ZavalaB, LunsdorfH, AgerberthB, MorschhauserJ, et al. (2014) Characterization of biofilm formation and the role of BCR1 in clinical isolates of Candida parapsilosis. Eukaryot Cell 13: 438–451.
87. LinCH, KabrawalaS, FoxEP, NobileCJ, JohnsonAD, et al. (2013) Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans. PLoS Pathog 9: e1003305.
88. SrikanthaT, DanielsKJ, PujolC, KimE, SollDR (2013) Identification of genes upregulated by the transcription factor Bcr1 that are involved in impermeability, impenetrability, and drug resistance of Candida albicans a/alpha biofilms. Eukaryot Cell 12: 875–888.
89. YiS, SahniN, DanielsKJ, LuKL, SrikanthaT, et al. (2011) Alternative Mating Type Configurations (a/alpha versus a/a or alpha/alpha) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways. PLoS Biol 9: e1001117.
90. LogueME, WongS, WolfeKH, ButlerG (2005) A genome sequence survey shows that the pathogenic yeast Candida parapsilosis has a defective MTLa1 allele at its mating type locus. Eukaryot Cell 4: 1009–1017.
91. RamageG, SavilleSP, ThomasDP, Lopez-RibotJL (2005) Candida biofilms: an update. Eukaryot Cell 4: 633–638.
92. StichternothC, ErnstJF (2009) Hypoxic adaptation by Efg1 regulates biofilm formation of Candida albicans. Appl Environ Microbiol 3663–3672.
93. ZordanRE, MillerMG, GalgoczyDJ, TuchBB, JohnsonAD (2007) Interlocking transcriptional feedback loops control White-Opaque switching in Candida albicans. PLoS Biol 5: e256.
94. LoHJ, KohlerJR, DiDomenicoB, LoebenbergD, CacciapuotiA, et al. (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939–949.
95. BinkA, GovaertG, VandenboschD, KucharikovaS, CoenyeT, et al. (2012) Transcription factor Efg1 contributes to the tolerance of Candida albicans biofilms against antifungal agents in vitro and in vivo. J Med Microbiol 61: 813–819.
96. DohrmannPR, ButlerG, TamaiK, DorlandS, GreeneJR, et al. (1992) Parallel pathways of gene regulation: homologous regulators SWI5 and ACE2 differentially control transcription of HO and chitinase. Genes Dev 6: 93–104.
97. DoolinMT, JohnsonAL, JohnstonLH, ButlerG (2001) Overlapping and distinct roles of the duplicated yeast transcription factors Ace2p and Swi5p. Mol Microbiol 40: 422–432.
98. SaputoS, Chabrier-RoselloY, LucaFC, KumarA, KrysanDJ (2012) The RAM network in pathogenic fungi. Eukaryot Cell 11: 708–717.
99. LackeyE, VipulanandanG, ChildersDS, KadoshD (2013) Comparative evolution of morphological regulatory functions in Candida species. Eukaryot Cell 12: 1356–1368.
100. LaneS, BirseC, ZhouS, MatsonR, LiuH (2001) DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276: 48988–48996.
101. ThompsonDS, CarlislePL, KadoshD (2011) Coevolution of morphology and virulence in Candida species. Eukaryot Cell 10: 1173–1182.
102. RenD, BedzykLA, ThomasSM, YeRW, WoodTK (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64: 515–524.
103. WangY, CaoYY, JiaXM, CaoYB, GaoPH, et al. (2006) Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Radic Biol Med 40: 1201–1209.
104. SetiadiER, DoedtT, CottierF, NoffzC, ErnstJF (2006) Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J Mol Biol 361: 399–411.
105. DesaiJV, BrunoVM, GangulyS, StamperRJ, MitchellKF, et al. (2013) Regulatory role of glycerol in Candida albicans biofilm formation. MBio 4: e00637–00612.
106. YeaterKM, ChandraJ, ChengG, MukherjeePK, ZhaoX, et al. (2007) Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology 153: 2373–2385.
107. NobileCJ, AndesDR, NettJE, SmithFJ, YueF, et al. (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2: e63.
108. PerezA, PedrosB, MurguiA, CasanovaM, Lopez-RibotJL, et al. (2006) Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res 6: 1074–1084.
109. InglisDO, ArnaudMB, BinkleyJ, ShahP, SkrzypekMS, et al. (2012) The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res 40: D667–674.
110. BraunBR, JohnsonAD (2000) TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155: 57–67.
111. DoedtT, KrishnamurthyS, BockmuhlDP, TebarthB, StempelC, et al. (2004) APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 15: 3167–3180.
112. LiuH (2001) Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4: 728–735.
113. SohnK, UrbanC, BrunnerH, RuppS (2003) EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol 47: 89–102.
114. GentlemanRC, CareyVJ, BatesDM, BolstadB, DettlingM, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
115. DingC, ButlerG (2007) Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. Eukaryot Cell 6: 1310–1319.
116. KimD, PerteaG, TrapnellC, PimentelH, KelleyR, et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14: R36.
117. AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.
118. AltschulSF, GishW, MillerW, MyersEW, LipmanDJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7
- The Ins and Outs of Rust Haustoria
- Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells
- RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms