The Role of Iron in Prion Disease and Other Neurodegenerative Diseases
article has not abstract
Vyšlo v časopise:
The Role of Iron in Prion Disease and Other Neurodegenerative Diseases. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004335
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004335
Souhrn
article has not abstract
Zdroje
1. SinghN, HaldarS, TripathiAK, HorbackK, WongJ, et al. (2014) Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 20: 1324–1363.
2. HaldarS, BeveridgeJ, WongJ, SinghA, GalimbertiD, et al. (2013) A low-molecular-weight ferroxidase is increased in the CSF of sCJD cases: CSF ferroxidase and transferrin as diagnostic biomarkers for sCJD. Antioxid Redox Signal 19: 1662–1675.
3. OlivieriS, ContiA, IannacconeS, CannistraciCV, CampanellaA, et al. (2011) Ceruloplasmin oxidation, a feature of Parkinson's disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci 31: 18568–18577.
4. SinghA, IsaacAO, LuoX, MohanML, CohenML, et al. (2009) Abnormal brain iron homeostasis in human and animal prion disorders. PLoS Pathog 5: e1000336.
5. GreenoughMA, CamakarisJ, BushAI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer's disease. Neurochem Int 62: 540–555.
6. AndersenHH, JohnsenKB, MoosT (2014) Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci 71: 1607–1622.
7. SinghA, HaldarS, HorbackK, TomC, ZhouL, et al. (2013) Prion protein regulates iron transport by functioning as a ferrireductase. J Alzheimers Dis 35: 541–552.
8. OhgamiRS, CampagnaDR, McDonaldA, FlemingMD (2006) The Steap proteins are metalloreductases. Blood 108: 1388–1394.
9. SinghA, QingL, KongQ, SinghN (2012) Change in the characteristics of ferritin induces iron imbalance in prion disease affected brains. Neurobiol Dis 45: 930–938.
10. HwangD, LeeIY, YooH, GehlenborgN, ChoJH, et al. (2009) A systems approach to prion disease. Mol Syst Biol 5: 252.
11. KimBH, JunYC, JinJK, KimJI, KimNH, et al. (2007) Alteration of iron regulatory proteins (IRP1 and IRP2) and ferritin in the brains of scrapie-infected mice. Neurosci Lett 422: 158–163.
12. HuzarewichRL, MedinaS, RobertsonC, ParchaliukD, BoothSA (2011) Transcriptional modulation in a leukocyte-depleted splenic cell population during prion disease. J Toxicol Environ Health A 74: 1504–1520.
13. FernaeusS, HalldinJ, BedecsK, LandT (2005) Changed iron regulation in scrapie-infected neuroblastoma cells. Brain Res Mol Brain Res 133: 266–273.
14. BasuS, MohanML, LuoX, KunduB, KongQ, et al. (2007) Modulation of proteinase K-resistant prion protein in cells and infectious brain homogenate by redox iron: implications for prion replication and disease pathogenesis. Mol Biol Cell 18: 3302–3312.
15. MishraRS, BasuS, GuY, LuoX, ZouWQ, et al. (2004) Protease-resistant human prion protein and ferritin are cotransported across Caco-2 epithelial cells: implications for species barrier in prion uptake from the intestine. J Neurosci 24: 11280–11290.
16. SinghA, KongQ, LuoX, PetersenRB, MeyersonH, et al. (2009) Prion protein (PrP) knock-out mice show altered iron metabolism: a functional role for PrP in iron uptake and transport. PLoS ONE 4: e6115.
17. PushieMJ, PickeringIJ, MartinGR, TsutsuiS, JirikFR, et al. (2011) Prion protein expression level alters regional copper, iron and zinc content in the mouse brain. Metallomics 3: 206–214.
18. BandyopadhyayS, CahillC, BalleidierA, HuangC, LahiriDK, et al. (2013) Novel 5′ untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: implications for down syndrome and Alzheimer's disease. PLoS ONE 8: e65978.
19. WongBX, DuceJA (2014) The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Front Pharmacol 5: 81.
20. SalazarJ, MenaN, HunotS, PrigentA, Alvarez-FischerD, et al. (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease. Proc Natl Acad Sci U S A 105: 18578–18583.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 9
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7
- The Ins and Outs of Rust Haustoria
- Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells
- RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms