Mouse, but Not Human, ApoB-100 Lipoprotein Cholesterol Is a Potent Innate Inhibitor of Pneumolysin
The pore-forming cholesterol-dependent cytolysins (CDCs) are one of the most widely disseminated virulence factors expressed by Gram-positive pathogens. Streptococcus pneumoniae is a major human pathogen and expresses a CDC termed pneumolysin (PLY). PLY and most CDCs bind cholesterol as their cellular receptor, which initiates the formation of the oligomeric pore complex. Our studies show the cholesterol carried by mouse ApoB-100 (CH-ApoB-100), but not human or guinea pig ApoB-100 lipoproteins, acts as a potent innate PLY inhibitor. This selective inhibitory capacity is not due to differences in CH-ApoB-100 levels, but appears to result from differences in cholesterol presentation at the surface of the ApoB-100 particle from these species. Our results suggest bacterial pathogenesis studies of S. pneumoniae and other CDC-producing bacteria utilizing mouse animal models may not reflect the CDCs true contribution to human disease or the potential efficacy of CDC-based vaccines due to the innate potent CDC inhibitory activity of mouse CH-ApoB-100.
Vyšlo v časopise:
Mouse, but Not Human, ApoB-100 Lipoprotein Cholesterol Is a Potent Innate Inhibitor of Pneumolysin. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004353
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004353
Souhrn
The pore-forming cholesterol-dependent cytolysins (CDCs) are one of the most widely disseminated virulence factors expressed by Gram-positive pathogens. Streptococcus pneumoniae is a major human pathogen and expresses a CDC termed pneumolysin (PLY). PLY and most CDCs bind cholesterol as their cellular receptor, which initiates the formation of the oligomeric pore complex. Our studies show the cholesterol carried by mouse ApoB-100 (CH-ApoB-100), but not human or guinea pig ApoB-100 lipoproteins, acts as a potent innate PLY inhibitor. This selective inhibitory capacity is not due to differences in CH-ApoB-100 levels, but appears to result from differences in cholesterol presentation at the surface of the ApoB-100 particle from these species. Our results suggest bacterial pathogenesis studies of S. pneumoniae and other CDC-producing bacteria utilizing mouse animal models may not reflect the CDCs true contribution to human disease or the potential efficacy of CDC-based vaccines due to the innate potent CDC inhibitory activity of mouse CH-ApoB-100.
Zdroje
1. RothblatGH, PhillipsMC (2010) High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol 21: 229–238.
2. HevonojaT, PentikainenMO, HyvonenMT, KovanenPT, Ala-KorpelaM (2000) Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta 1488: 189–210.
3. LosFC, RandisTM, AroianRV, RatnerAJ (2013) Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 77: 173–207.
4. FarrandAJ, LaChapelleS, HotzeEM, JohnsonAE, TwetenRK (2010) Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci U S A 107: 4341–4346.
5. Ohno-IwashitaY, IwamotoM, MitsuiK, AndoS, IwashitaS (1991) A cytolysin, theta-toxin, preferentially binds to membrane cholesterol surrounded by phospholipids with 18-carbon hydrocarbon chains in cholesterol-rich region. J Biochem 110: 369–375.
6. PrigentD, AloufJE (1976) Interaction of steptolysin O with sterols. Biochim Biophys Acta 443: 288–300.
7. HotzeEM, TwetenRK (2012) Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 1818: 1028–1038.
8. GelberSE, AguilarJL, LewisKL, RatnerAJ (2008) Functional and phylogenetic characterization of Vaginolysin, the human-specific cytolysin from Gardnerella vaginalis. J Bacteriol 190: 3896–3903.
9. RampersaudR, PlanetPJ, RandisTM, KulkarniR, AguilarJL, et al. (2011) Inerolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J Bacteriol 193: 1034–1041.
10. ShumwayCN, KlebanoffSJ (1971) Purification of pneumolysin. Infect Immun 4: 388–392.
11. GeoffroyC, AloufJE (1983) Selective purification by thiol-disulfide interchange chromatography of alveolysin, a sulfhydryl-activated toxin of Bacillus alvei. Toxin properties and interaction with cholesterol and liposomes. J Biol Chem 258: 9968–9972.
12. ShannonJG, RossCL, KoehlerTM, RestRF (2003) Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect Immun 71: 3183–3189.
13. JacobsT, DarjiA, FrahmN, RohdeM, WehlandJ, et al. (1998) Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol Microbiol 28: 1081–1089.
14. HeuckAP, SavvaCG, HolzenburgA, JohnsonAE (2007) Conformational Changes That Effect Oligomerization and Initiate Pore Formation Are Triggered throughout Perfringolysin O upon Binding to Cholesterol. J Biol Chem 282: 22629–22637.
15. HeuckAP, HotzeE, TwetenRK, JohnsonAE (2000) Mechanism of membrane insertion of a multimeric b-barrel protein: Perfringolysin O creates a pore using ordered and coupled conformational changes. Molec Cell 6: 1233–1242.
16. FlanaganJJ, TwetenRK, JohnsonAE, HeuckAP (2009) Cholesterol exposure at the membrane surface is necessary and sufficient to trigger perfringolysin O binding. Biochemistry 48: 3977–3987.
17. NelsonLD, JohnsonAE, LondonE (2008) How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. J Biol Chem 283: 4632–4642.
18. ZitzerA, BittmanR, VerbickyCA, ErukullaRK, BhakdiS, et al. (2001) Coupling of cholesterol and cone-shaped lipids in bilayers augments membrane permeabilization by the cholesterol-specific toxins streptolysin O and Vibrio cholerae cytolysin. J Biol Chem 276: 14628–14633.
19. PrasslR, LaggnerP (2009) Molecular structure of low density lipoprotein: current status and future challenges. Eur Biophys J 38: 145–158.
20. GrassDS, SainiU, FelknerRH, WallaceRE, LagoWJ, et al. (1995) Transgenic mice expressing both human apolipoprotein B and human CETP have a lipoprotein cholesterol distribution similar to that of normolipidemic humans. J Lipid Res 36: 1082–1091.
21. TwetenRK (2005) The cholesterol-dependent cytolysins; a family of versatile pore-forming toxins. Infect Immun 73: 6199–6209.
22. BalachandranP, HollingsheadSK, PatonJC, BrilesDE (2001) The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J Bacteriol 183: 3108–3116.
23. PriceKE, CamilliA (2009) Pneumolysin localizes to the cell wall of Streptococcus pneumoniae. J Bacteriol 191: 2163–2168.
24. PriceKE, GreeneNG, CamilliA (2012) Export requirements of pneumolysin in Streptococcus pneumoniae. J Bacteriol 194: 3651–3660.
25. MarriottHM, MitchellTJ, DockrellDH (2008) Pneumolysin: a double-edged sword during the host-pathogen interaction. Curr Mol Med 8: 497–509.
26. AdegbolaRA, ObaroSK (2000) Diagnosis of childhood pneumonia in the tropics. Ann Trop Med Parasitol 94: 197–207.
27. PatonJC, RowanKB, FerranteA (1984) Activation of human complement by the pneumococcal toxin pneumolysin. Infect Immun 43: 1085–1087.
28. MitchellTJ, AndrewPW, SaundersFK, SmithAN, BoulnoisGJ (1991) Complement activation and antibody binding by pneumolysin via a region of the toxin homologous to a human acute-phase protein. Mol Microbiol 5: 1883–1888.
29. JarvaH, JokirantaTS, WurznerR, MeriS (2003) Complement resistance mechanisms of streptococci. Mol Immunol 40: 95–107.
30. YusteJ, BottoM, PatonJC, HoldenDW, BrownJS (2005) Additive inhibition of complement deposition by pneumolysin and PspA facilitates Streptococcus pneumoniae septicemia. J Immunol 175: 1813–1819.
31. FrancoisRJ (1965) Beta-haemolytic streptococci and antistreptolysin-O titres in patients with rheumatoid arthritis and a matched control group. Ann Rheum Dis 24: 369–377.
32. KleinGC, BakerCN, JonesWL (1971) “Upper limits of normal” antistreptolysin O and antideoxyribonuclease B titers. Appl Microbiol 21: 999–1001.
33. JohnsonMK, CalleganMC, EngelLS, O'CallaghanRJ, HillJM, et al. (1995) Growth and virulence of a complement-activation-negative mutant of Streptococcus pneumoniae in the rabbit cornea. Curr Eye Res 14: 281–284.
34. ForceE, TabernerF, CabellosC, RibesS, DomenechA, et al. (2008) Experimental study of meropenem in the therapy of cephalosporin-susceptible and -resistant pneumococcal meningitis. Eur J Clin Microbiol Infect Dis 27: 685–690.
35. NorcrossEW, SandersME, MooreQC3rd, TaylorSD, TullosNA, et al. (2011) Active Immunization with Pneumolysin versus 23-Valent Polysaccharide Vaccine for Streptococcus pneumoniae Keratitis. Invest Ophthalmol Vis Sci 52: 9232–9243.
36. BlankAL, DavisGL, VanDeWaterTR, RubenRJ (1994) Acute Streptococcus pneumoniae meningogenic labyrinthitis. An experimental guinea pig model and literature review. Arch Otolaryngol Head Neck Surg 120: 1342–1346.
37. KuoJ, DouglasM, ReeHK, LindbergAA (1995) Characterization of a recombinant pneumolysin and its use as a protein carrier for pneumococcal type 18C conjugate vaccines. Infect Immun 63: 2706–2713.
38. SkinnerLJ, BeurgM, MitchellTJ, DarrouzetV, AranJM, et al. (2004) Intracochlear perfusion of pneumolysin, a pneumococcal protein, rapidly abolishes auditory potentials in the Guinea pig cochlea. Acta Otolaryngol 124: 1000–1007.
39. SalhaD, SzetoJ, MyersL, ClausC, SheungA, et al. (2012) Neutralizing antibodies elicited by a novel detoxified pneumolysin derivative, PlyD1, provide protection against both pneumococcal infection and lung injury. Infect Immun 80: 2212–2220.
40. PatonJC, LockRA, HansmanDJ (1983) Effect of immunization with pneumolysin on survival time of mice challenged with Streptococcus pneumoniae. Infect Immun 40: 548–552.
41. GoldmanDL, ZengW, RiveraJ, NakouzziA, CasadevallA (2008) Human serum contains a protease that protects against cytotoxic activity of Bacillus anthracis lethal toxin in vitro. Clin Vaccine Immunol 15: 970–973.
42. MoayeriM, WigginsJF, LepplaSH (2007) Anthrax protective antigen cleavage and clearance from the blood of mice and rats. Infect Immun 75: 5175–5184.
43. SoltaniCE, HotzeEM, JohnsonAE, TwetenRK (2007) Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin. J Biol Chem 282: 15709–15716.
44. ShepardLA, ShaturskyO, JohnsonAE, TwetenRK (2000) The mechanism of assembly and insertion of the membrane complex of the cholesterol-dependent cytolysin perfringolysin O: Formation of a large prepore complex. Biochemistry 39: 10284–10293.
45. HotzeEM, Wilson-KubalekE, FarrandAJ, BentsenL, ParkerMW, et al. (2012) Monomer-monomer interactions propagate structural transitions necessary for pore formation by the cholesterol-dependent cytolysins. J Biol Chem 287: 24534–24543.
46. HotzeEM, Wilson-KubalekEM, RossjohnJ, ParkerMW, JohnsonAE, et al. (2001) Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate. J Biol Chem 276: 8261–8268.
47. HarrisRW, SimsPJ, TwetenRK (1991) Kinetic aspects of the aggregation of Clostridium perfringens theta toxin on erythrocyte membranes: A fluorescence energy transfer study. J Biol Chem 266: 6936–6941.
48. AllenJK, HensleyWJ, NichollsAV, WhitfieldJB (1979) An enzymic and centrifugal method for estimating high-density lipoprotein cholesterol. Clin Chem 25: 325–327.
49. GoulartC, da SilvaTR, RodriguezD, PolitanoWR, LeiteLC, et al. (2013) Characterization of protective immune responses induced by pneumococcal surface protein A in fusion with pneumolysin derivatives. PLoS One 8: e59605.
50. KovanenPT, FaustJR, BrownMS, GoldsteinJL (1979) Low density lipoprotein receptors in bovine adrenal cortex. I. Receptor-mediated uptake of low density lipoprotein and utilization of its cholesterol for steroid synthesis in cultured adrenocortical cells. Endocrinology 104: 599–609.
51. LundbergJ, RudlingM, AngelinB (2013) Interstitial fluid lipoproteins. Curr Opin Lipidol 24: 327–331.
52. CrossCE, ForteTM, GuntherRA, KramerGC (1983) Lipoprotein distribution in sheep lung lymph. J Lab Clin Med 101: 641–650.
53. BentonKA, EversonMP, BrilesDE (1995) A pneumolysin-negative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis in mice. Infect Immun 63: 448–455.
54. LindsayJR, BoormanGA, CollinsMC, HsuC-K, van Hoosier JrGL, et al. (1991) Infectious diseases of mice and rats. : The National Academies Press.
55. FallonMT, ReinhardMK, GrayBM, DavisTW, LindseyJR (1988) Inapparent Streptococcus pneumoniae type 35 infections in commercial rats and mice. Lab Anim Sci 38: 129–132.
56. PrigentD, AloufJE (1976) Interaction of streptolysin-O with sterols. Biochim Biophys Acta 443: 288–300.
57. EsterbauerH, RamosP (1996) Chemistry and pathophysiology of oxidation of LDL. Rev Physiol Biochem Pharmacol 127: 31–64.
58. Lund-KatzS, PhillipsMC (1984) Packing of cholesterol molecules in human high-density lipoproteins. Biochemistry 23: 1130–1138.
59. Lund-KatzS, PhillipsMC (1986) Packing of cholesterol molecules in human low-density lipoprotein. Biochemistry 25: 1562–1568.
60. EsterbauerH, GebickiJ, PuhlH, JurgensG (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13: 341–390.
61. NelsonLD, ChiantiaS, LondonE (2010) Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity. Biophys J 99: 3255–3263.
62. HeuckAP, TwetenRK, JohnsonAE (2003) Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. J Biol Chem 278: 31218–31225.
63. RamachandranR, HeuckAP, TwetenRK, JohnsonAE (2002) Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat Struct Biol 9: 823–827.
64. SoltaniCE, HotzeEM, JohnsonAE, TwetenRK (2007) Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci U S A 104: 20226–20231.
65. JohnsonBB, MoePC, WangD, RossiK, TrigattiBL, et al. (2012) Modifications in perfringolysin O domain 4 alter the cholesterol concentration threshold required for binding. Biochemistry 51: 3373–3382.
66. RigbyC (1976) Natural infections of guinea-pigs. Lab Anim 10: 119–142.
67. ImohlM, ReinertRR, OcklenburgC, van der LindenM (2010) Association of serotypes of Streptococcus pneumoniae with age in invasive pneumococcal disease. J Clin Microbiol 48: 1291–1296.
68. HolmlundE, QuiambaoB, OllgrenJ, NohynekH, KayhtyH (2006) Development of natural antibodies to pneumococcal surface protein A, pneumococcal surface adhesin A and pneumolysin in Filipino pregnant women and their infants in relation to pneumococcal carriage. Vaccine 24: 57–65.
69. FrancisJP, RichmondPC, PomatWS, MichaelA, KenoH, et al. (2009) Maternal antibodies to pneumolysin but not to pneumococcal surface protein A delay early pneumococcal carriage in high-risk Papua New Guinean infants. Clin Vaccine Immunol 16: 1633–1638.
70. BrilesDE, AdesE, PatonJC, SampsonJS, CarloneGM, et al. (2000) Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect Immun 68: 796–800.
71. ShepardLA, HeuckAP, HammanBD, RossjohnJ, ParkerMW, et al. (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37: 14563–14574.
72. HotzeEM, LeHM, SieberJR, BruxvoortC, McInerneyMJ, et al. (2013) Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria. Infect Immun 81: 216–225.
73. ZhouJ, MontefioriDC (1996) Complement-activating antibodies in sera from infected individuals and vaccinated volunteers that target human immunodeficiency virus type 1 to complement receptor type 1 (CR1, CD35). Virology 226: 13–21.
74. ShepardLA, HeuckAP, HammanBD, RossjohnJ, ParkerMW, et al. (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an a-helical to b-sheet transition identified by fluorescence spectroscopy. Biochemistry 37: 14563–14574.
75. AbramoffMD, MagelhaesPJ, RamSJ (2004) Image Processing with ImageJ. Biophoton Int 11: 36–42.
76. HotzeEM, HeuckAP, CzajkowskyDM, ShaoZ, JohnsonAE, et al. (2002) Monomer-monomer interactions drive the prepore to pore conversion of a beta-barrel-forming cholesterol-dependent cytolysin. J Biol Chem 277: 11597–11605.
77. ShepardLA, ShaturskyO, JohnsonAE, TwetenRK (2000) The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry 39: 10284–10293.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7
- The Ins and Outs of Rust Haustoria
- Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells
- RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms