Symbionts Commonly Provide Broad Spectrum Resistance to Viruses in Insects: A Comparative Analysis of Strains
In recent years it has been discovered that many organisms are infected with bacterial symbionts that protect them against pathogens. Wolbachia is a bacterial symbiont that is found in many species of insects, and several strains are known to protect the insects against viral infection. We took 19 strains of Wolbachia from different species of Drosophila fruit flies, transferred them into Drosophila simulans, and then infected these flies with two different viruses. We found that about half of the strains slowed the death of flies after viral infection. Given that 40% of terrestrial arthropods may be infected with Wolbachia, this suggests that many species may benefit from this protection. These increases in survival were tightly linked to reductions in the levels of the virus in the insect, suggesting that Wolbachia is reducing the viruses' ability to replicate. Despite the two viruses we used being very different, the level of protection that a Wolbachia strain provided against the two viruses tended to be very similar, suggesting that a single general mechanism underlies the antiviral effects. The extent to which a Wolbachia strain provides protection against viral infection depends largely on the bacterial density— the more Wolbachia, the greater the protection.
Vyšlo v časopise:
Symbionts Commonly Provide Broad Spectrum Resistance to Viruses in Insects: A Comparative Analysis of Strains. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004369
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004369
Souhrn
In recent years it has been discovered that many organisms are infected with bacterial symbionts that protect them against pathogens. Wolbachia is a bacterial symbiont that is found in many species of insects, and several strains are known to protect the insects against viral infection. We took 19 strains of Wolbachia from different species of Drosophila fruit flies, transferred them into Drosophila simulans, and then infected these flies with two different viruses. We found that about half of the strains slowed the death of flies after viral infection. Given that 40% of terrestrial arthropods may be infected with Wolbachia, this suggests that many species may benefit from this protection. These increases in survival were tightly linked to reductions in the levels of the virus in the insect, suggesting that Wolbachia is reducing the viruses' ability to replicate. Despite the two viruses we used being very different, the level of protection that a Wolbachia strain provided against the two viruses tended to be very similar, suggesting that a single general mechanism underlies the antiviral effects. The extent to which a Wolbachia strain provides protection against viral infection depends largely on the bacterial density— the more Wolbachia, the greater the protection.
Zdroje
1. MoranNA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci U S A 15: 8627–8633.
2. WerrenJH, BaldoL, ClarkME (2008) Wolbachia: master manipulators of invertebrate biology. Nature 6: 741–751.
3. EngelstädterJ, HurstGDD (2009) The Ecology and Evolution of Microbes that Manipulate Host Reproduction. Annu Rev Ecol Evol Syst 40: 127–149.
4. BaumannP (2005) Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59: 155–189.
5. MoranN, TranP, GerardoN (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71: 8802–8810.
6. DouglasAE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23: 38–47.
7. OliverKM, DegnanPH, BurkeGR, MoranNA (2010) Facultative Symbionts in Aphids and the Horizontal Transfer of Ecologically Important Traits. Annu Rev Entomol 55: 247–266.
8. RussellJ, MoranN (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B Biol Sci 273: 603–610.
9. OliverKM, RussellJA, MoranNA, HunterMS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100: 1803–1807.
10. JaenikeJ, UncklessR, CockburnSN, BoelioLM, PerlmanSJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329: 212–215.
11. XieJL, VilchezI, MateosM (2010) Spiroplasma Bacteria Enhance Survival of Drosophila hydei Attacked by the Parasitic Wasp Leptopilina heterotoma. PLoS One 5: e12149.
12. JigginsFM, HurstGDD (2011) Rapid insect evolution by symbiont transfer. Science 332: 185–186.
13. BaldoL, AyoubNA, HayashiCY, RussellJA, StahlhutJK, et al. (2008) Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol Ecol 17: 557–569.
14. SchulerH, BertheauC, EganSP, FederJL, RieglerM, et al. (2013) Evidence for a recent horizontal transmission and spatial spread of Wolbachia from endemic Rhagoletis cerasi (Diptera: Tephritidae) to invasive Rhagoletis cingulata in Europe. Mol Ecol 22: 4101–4111.
15. StahlhutJK, DesjardinsCA, ClarkME, BaldoL, RussellJA, et al. (2010) The mushroom habitat as an ecological arena for global exchange of Wolbachia. Mol Ecol 19: 1940–1952.
16. HenryLM, PeccoudJ, SimonJ-C, HadfieldJD, MaidenMJC, et al. (2013) Horizontally Transmitted Symbionts and Host Colonization of Ecological Niches. Curr Biol 23: 1713–1717.
17. HimlerAG, Adachi-HagimoriT, BergenJE, KozuchA, KellySE, et al. (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332: 254–256.
18. ZugR, HammersteinP (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7: e38544.
19. CharlatS, NirgianakiA, BourtzisK, MerçotH (2002) Evolution of Wolbachia-induced cytoplasmic incompatibility in Drosophila simulans and D. sechellia. Evolution (N Y) 56: 1735–1742.
20. BourtzisK, NirgianakiA, MarkakisG, SavakisC (1996) Wolbachia Infection and Cytoplasmic Incompatibility in Drosophila Species. Genetics 144: 1063–1073.
21. DyerKa, JaenikeJ (2004) Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila: molecular evidence from the host and parasite genomes. Genetics 168: 1443–1455.
22. CharlatS, HurstGDD, MerçotH (2003) Evolutionary consequences of Wolbachia infections. 19: 217–223.
23. ZabalouS, ApostolakiA, PattasS, VenetiZ, ParaskevopoulosC, et al. (2008) Multiple rescue factors within a Wolbachia strain. Genetics 178: 2145–2160.
24. StouthamerR, BreeuwerJAJ, HurstGDD (1999) Wolbachia Pipientis: Microbial Manipulator of Arthropod Reproduction. Annu Rev Microbiol 53: 71–102.
25. HedgesL, BrownlieJ, O'NeillS, JohnsonK (2008) Wolbachia and virus protection in insects. Science 322: 702.
26. TeixeiraL, FerreiraA, AshburnerM (2008) The Bacterial Symbiont Wolbachia Induces Resistance to RNA Viral Infections in Drosophila melanogaster. PLoS Biol 6: 2753–2763.
27. OsborneSE, LeongYS, O'NeillSL, JohnsonKN (2009) Variation in Antiviral Protection Mediated by Different Wolbachia Strains in Drosophila simulans. PLoS Pathog 5: 9.
28. UncklessRL, JaenikeJ (2011) Maintenance of a male-killing Wolbachia in Drosophila innubila by male-killing dependent and male-killing independent mechanims. Evolution 66: 678–689.
29. MoreiraLA, Iturbe-OrmaetxeI, JefferyJA, LuG, PykeAT, et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139: 1268–1278.
30. FrentiuFD, RobinsonJ, YoungPR, McGrawEa, O'NeillSL (2010) Wolbachia-mediated resistance to dengue virus infection and death at the cellular level. PLoS One 5: e13398.
31. GlaserRL, MeolaMa (2010) The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS One 5: e11977.
32. BlagroveMSC, Arias-GoetaC, FaillouxA-B, SinkinsSP (2012) Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci U S A 109: 255–260.
33. KambrisZ, CookP, PhucH, SinkinsS (2009) Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326: 134–136.
34. ZéléF, Nicota, DuronO, Riveroa (2012) Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system. J Evol Biol 25: 1243–1252.
35. YeYH, WoolfitM, RancèsE, O'NeillSL, McGrawEa (2013) Wolbachia-Associated Bacterial Protection in the Mosquito Aedes aegypti. PLoS Negl Trop Dis 7: e2362.
36. HughesGL, KogaR, XueP, FukatsuT, RasgonJL (2011) Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog 7: e1002043.
37. CookPE, McGrawEa (2010) Wolbachia pipientis: an expanding bag of tricks to explore for disease control. Trends Parasitol 26: 373–375.
38. VavreF, CharlatS (2012) Making (good) use of Wolbachia: what the models say. Curr Opin Microbiol 15: 263–268.
39. HussainM, LuG, TorresS, EdmondsJH, KayBH, et al. (2013) Effect of Wolbachia on replication of West Nile virus in a mosquito cell line and adult mosquitoes. J Virol 87: 851–858.
40. Van den HurkAF, Hall-MendelinS, PykeAT, FrentiuFD, McElroyK, et al. (2012) Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis 6: e1892.
41. WalkerT, JohnsonPH, MoreiraLa, Iturbe-OrmaetxeI, FrentiuFD, et al. (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450–453.
42. HoffmannAA, MontgomeryBL, PopoviciJ, Iturbe-OrmaetxeI, JohnsonPH, et al. (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454–457.
43. LongdonB, FabianDK, HurstGD, JigginsFM (2012) Male-killing Wolbachia do not protect Drosophila bifasciata against viral infection. BMC Microbiol 12 Suppl 1: S8.
44. ChrostekE, MarialvaMSP, YamadaR, O'NeillS, et al. (2014) High antiviral protection without immune upregulation after interspecies Wolbachia transfer. PLoS one 9: e99025.
45. ChrostekE, MarialvaMSP, EstevesSS, WeinertLa, MartinezJ, et al. (2013) Wolbachia Variants Induce Differential Protection to Viruses in Drosophila melanogaster: A Phenotypic and Phylogenomic Analysis. PLoS Genet 9: e1003896.
46. OsborneSE, Iturbe-OrmaetxeI, BrownlieJC, O'NeillSL, JohnsonKN (2012) Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila simulans. Appl Environ Microbiol 78: 6922–6929.
47. LuP, BianG, PanX, XiZ (2012) Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop Dis 6: e1754.
48. KambrisZ, BlagboroughAM, PintoSB, BlagroveMSC, GodfrayHCJ, et al. (2010) Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog 6: e1001143.
49. PanX, ZhouG, WuJ, BianG, LuP, et al. (2012) Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 109: E23–31.
50. RancèsE, YeYH, WoolfitM, McGrawEa, O'NeillSL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8: e1002548.
51. BourtzisK, PettigrewMM, O'NeillSL (2000) Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Mol Biol 9: 635–639.
52. RottschaeferSM, LazzaroBP (2012) No effect of Wolbachia on resistance to intracellular infection by pathogenic bacteria in Drosophila melanogaster. PLoS One 7: e40500.
53. WongZS, HedgesLM, BrownlieJC, JohnsonKN (2011) Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PLoS One 6: e25430.
54. RancèsE, JohnsonTK, PopoviciJ, Iturbe-OrmaetxeI, ZakirT, et al. (2013) The toll and imd pathways are not required for Wolbachia-mediated dengue virus interference. J Virol 87: 11945–11949.
55. TeixeiraL (2012) Whole-genome expression profile analysis of Drosophila melanogaster immune responses. Brief Funct Genomics 11: 375–386.
56. HedgesLM, YamadaR, O'NeillSL, JohnsonKN (2012) The small interfering RNA pathway is not essential for Wolbachia-mediated antiviral protection in Drosophila melanogaster. Appl Environ Microbiol 78: 6773–6776.
57. ZhangG, HussainM, O'NeillSL, AsgariS (2013) Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. Proc Natl Acad Sci U S A 110: 10276–10281.
58. HussainM, FrentiuFD, MoreiraLa, O'NeillSL, AsgariS (2011) Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc Natl Acad Sci U S A 108: 9250–9255.
59. DurdevicZ, HannaK, GoldB, PollexT, CherryS, et al. (2013) Efficient RNA virus control in Drosophila requires the RNA methyltransferase Dnmt2. EMBO Rep 14: 269–275 Available: http://www.ncbi.nlm.nih.gov/pubmed/23370384.
60. HuszarT, ImlerJ-L (2008) Drosophila viruses and the study of antiviral host-defense. Adv Virus Res 72: 227–265.
61. PlusN, CroizierG, JoussetF, DavidJ (1975) Picornaviruses of laboratory and wild Drosophila melanogaster: geographical distribution and serotypic composition. Ann Microbiol (Paris) 126: 107–117.
62. Christian P, Scotti P (1998) Picornalike Viruses of Insects. In: Miller L, Ball LA, editors. The Insect Viruses SE - 10. Springer US. pp. 301–336.
63. ComendadorM, PlusN, LouisC, Lopez-FerberM, KuhlA, et al. (1986) Endemic microorganisms of a Drosophila simulans strain and their relationships with the non-mendelian transmission of a character. Génétique, sélection, évolution 18: 131–144.
64. ScottiP, DearingS, MossopD (1983) Flock house virus: A Nodavirus isolated from Costelytra zealandica (White)(Coleoptera: Scarabaeida). Arch Virol 75: 181–189.
65. DidelotX, FalushD (2007) Inference of Bacterial Microevolution Using Multilocus Sequence Data. Genet 175 1251–1266.
66. BaldoL, Dunning HotoppJC, JolleyKa, BordensteinSR, BiberSa, et al. (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72: 7098–7110.
67. OliverKM, MoranNA, HunterMS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. 102: 12795–12800.
68. DuronO, BouchonD, BoutinS, BellamyL, ZhouL, et al. (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6: 1–12.
69. KondoN, ShimadaM, FukatsuT (2005) Infection density of Wolbachia endosymbiont affected by co-infection and host genotype. Biol Lett 1: 488–491.
70. MoutonL, HenriH, CharifD, BoulétreauM, VavreF (2007) Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biol Lett 3: 210–213.
71. RåbergL, GrahamAL, ReadAF (2009) Decomposing health: tolerance and resistance to parasites in animals. Philos Trans R Soc Lond B Biol Sci 364: 37–49.
72. MedzhitovR, SchneiderDS, SoaresMP (2012) Disease tolerance as a defense strategy. Science 335: 936–941.
73. GrahamR, GrzywaczD, MushoboziWL, WilsonK (2012) Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects. PLoS Pathog 9: 993–1000.
74. DodsonB, HughesG, PaulO, MatacchieroAC, KramerLD, RasgonJL (2014) Wolbachia enhances West Nile Virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl Trop Dis 7: e2965.
75. CaragataEP, RancèsE, HedgesLM, GoftonAW, JohnsonKN, et al. (2013) Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog 9: e1003459.
76. WoolfitM, Iturbe-OrmaetxeI, BrownlieJC, WalkerT, RieglerM, et al. (2013) Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol Evol 1–61.
77. TurelliM, HoffmannA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353: 440–442.
78. KriesnerP, HoffmannAA, LeeSF, TurelliM, WeeksAR (2013) Rapid Sequential Spread of Two Wolbachia Variants in Drosophila simulans. PLoS Pathog 9: e1003607.
79. HoffmannA, ClancyD, DuncanJ (1996) Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity 76: 1–8.
80. Hoffmannaa, HercusM, DagherH (1998) Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics 148: 221–231.
81. FariaVG, SucenaE (2013) Wolbachia in the Malpighian tubules: evolutionary dead-end or adaptation? J Exp Zool B Mol Dev Evol 320: 195–199.
82. PoinsotD, BourtzisK, MarkakisG, SavakisC, MerçotH (1998) Wolbachia Transfer from Drosophila melanogaster into D. simulans: Host Effect and Cytoplasmic Incompatibility Relationships. Genetics 150: 227–237.
83. VenetiZ, ZabalouS, PapafotiouG, ParaskevopoulosC, PattasS, et al. (2012) Loss of reproductive parasitism following transfer of male-killing Wolbachia to Drosophila melanogaster and Drosophila simulans. Heredity 109: 306–312.
84. ZhouW, RoussetF, O'NeillS (1998) Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proc R Soc B-Biological Sci 265: 509–515.
85. ParaskevopoulosC, BordensteinSR, WernegreenJJ, WerrenJH, BourtzisK (2006) Toward a Wolbachia multilocus sequence typing system: discrimination of Wolbachia strains present in Drosophila species. Curr Microbiol 53: 388–395.
86. DarlingA, MauB, BlattnerF, PernaN (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14: 1394–1403.
87. GelmanA, RubinD (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7: 457–511.
88. TamuraK, PetersonD, PetersonN, StecherG, NeiM, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.
89. R Core Team (2013) R: A Language and Environment for Statistical Computing.
90. GuindonS, DufayardJ-F, LefortV, AnisimovaM, HordijkW, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.
91. Sullivan W, Ashburner M, Hawley R (2000) Drosophila Protocols. New York: Cold Spring Harbor Laboratory Press.
92. LongdonB, CaoC, MartinezJ, JigginsFM (2013) Previous exposure to an RNA virus does not protect against subsequent infection in Drosophila melanogaster. PLoS One 8: e73833.
93. PfafflMW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.
94. HadfieldJ (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33: 1–22.
95. HousworthEa, MartinsEP, LynchM (2004) The phylogenetic mixed model. Am Nat 163: 84–96.
96. HadfieldJD, NakagawaS (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23: 494–508.
97. MateosM, CastrezanaSJ, NankivellBJ, EstesAM, MarkowTA, et al. (2006) Heritable Endosymbionts of Drosophila. Genetics 174: 363–376.
98. SheeleySL, McAllisterBF (2009) Mobile male-killer: similar Wolbachia strains kill males of divergent Drosophila hosts. Heredity 102: 286–292.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7
- The Ins and Outs of Rust Haustoria
- Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells
- RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms