Evolution of Plastic Transmission Strategies in Avian Malaria
Seasonal fluctuations in the environment affect dramatically the abundance of insect species. These fluctuations have important consequences for the transmission of vector-borne diseases. Here we contend that malaria parasites may have evolved plastic transmission strategies as an adaptation to the fluctuations in mosquito densities. First, our theoretical analysis identifies the conditions for the evolution of such plastic transmission strategies. Second, we show that in avian malaria Plasmodium parasites have the ability to increase transmission after being bitten by uninfected Culex mosquitoes. This demonstrates the ability of Plasmodium parasites to adopt plastic transmission strategies and challenges our understanding of malaria epidemiology.
Vyšlo v časopise:
Evolution of Plastic Transmission Strategies in Avian Malaria. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004308
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004308
Souhrn
Seasonal fluctuations in the environment affect dramatically the abundance of insect species. These fluctuations have important consequences for the transmission of vector-borne diseases. Here we contend that malaria parasites may have evolved plastic transmission strategies as an adaptation to the fluctuations in mosquito densities. First, our theoretical analysis identifies the conditions for the evolution of such plastic transmission strategies. Second, we show that in avian malaria Plasmodium parasites have the ability to increase transmission after being bitten by uninfected Culex mosquitoes. This demonstrates the ability of Plasmodium parasites to adopt plastic transmission strategies and challenges our understanding of malaria epidemiology.
Zdroje
1. MeyersLA, BullJJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17: 551–557.
2. MasseyRC, BucklingA, PeacockSJ (2001) Phenotypic switching of antibiotic resistance circumvents permanent costs in Staphylococcus aureus. Curr Biol 11: 1810–1814.
3. BalabanNQ, MerrinJ, ChaitR, KowalikL, LeiblerS (2004) Bacterial persistence as a phenotypic switch. Science 305: 1622–1625.
4. StewartFM, LevinBR (1984) The population biology of bacterial viruses: why be temperate. Theor Pop Biol 26: 93–117.
5. StumpfMPH, LaidlawZ, JansenVAA (2002) Herpes viruses hedge their bets. Proc Natl Acad Sci USA 99: 15234–15237.
6. TrapeJF, Lefebvre-ZanteE, LegrosF, NdiayeG, BouganaliH, et al. (1992) Vector density gradients and the epidemiology of urban malaria in Dakar, Senegal. Am J Trop Med Hyg 47: 181–189.
7. RogersDJ, RandolphSE, SnowRW, HaySI (2002) Satellite imagery in the study and forecast of malaria. Nature 415: 710–715.
8. MbogoCM, MwangangiJM, NzovuJ, GuW, YanG, et al. (2003) Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg 68: 734–742.
9. OesterholtMJAM, BousemaJT, MwerindeOK, HarrisC, LushinoP, et al. (2006) Spatial and temporal variation in malaria transmission in a low endemicity area in northern Tanzania. Malaria J 5: 98.
10. PaulREL, DialloM, BreyPT (2004) Mosquitoes and transmission of malaria parasites - not just vectors. Malaria J 3: e39.
11. PonçonN, TotyC, L'AMBERTG, Le GoffG, BrenguesC, et al. (2007) Population dynamics of pest mosquitoes and potential malaria and West Nile virus vectors in relation to climatic factors and human activities in the Camargue, France. Med Vet Entomol 21: 350–357.
12. WhiteNJ (2011) Determinants of relapse periodicity in Plasmodium vivax malaria. Malaria J 10: 297.
13. McLeanSA, PersonCD, PhillipsRS (1982) Plasmodium chabaudi: relationship between the occurence of recrudescenct parasitaemias in mice and the effective levels of acquired immunity. Exp Parasitol 54: 213–221.
14. HuffCG, BloomW (1935) A malarial parasite infecting all blood and blood-forming cells of birds. J Infect Dis 57: 315–336.
15. JamesSP, TateP (1937) New knowledge of the life-cycle of malaria parasites. Nature 139: 545.
16. ShorttHE, GarnhamPCC, CovellG, ShutePG (1948) Pre-erythrocytic stage of human malaria, Plasmodium vivax. Brit Med J 1: 547.
17. CogswellFB (1992) The hypnozoite and relapse in primate malaria. Clin Microbiol Rev 5: 26–35.
18. ThompsonPE, HuffCG (1944) A saurian malarial parasite, Plasmodium mexicanum, N. Sp., with both elongatum and gallinaceum-types of exoerythrocytic stages. J Infect Dis 74: 48–67.
19. TelfordSRJr (1989) Discovery of the pre-erythrocytic stages of a saurian malaria parasite, hypnozoites, and a possible mechanism for the maintenance of chronic infections throughout the life of the host. Int J Parasitol 19: 597–616.
20. Thayer WLotmf, p. 326. (1897) Lectures on the malarial fevers. New York: D. Appleton & Co.
21. CoatneyGR (1976) Relapse in malaria: an enigma. J Parasitol 62: 2–9.
22. BattleKE, KarhunenMS, BhattS, GethingPW, HowesRE, et al. (2014) Geographical variation in Plasmodium vivax relapse. Malaria J 13: 144.
23. AllanRA, MahrtJL (1989) Influence of transmission period on primary and relapse patterns of infection of Leucocytozoon spp. and Haemoproteus mansoni. Am Midl Nat 121: 341–349.
24. PigliucciM (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20: 481–486.
25. ScheinerSM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24: 35–68.
26. ReeceSE, RamiroRS, NusseyDH (2009) Plastic parasites: sophisticated strategies for survival and reproduction? Evol Appl 2: 11–23.
27. BabayanSA, ReadAF, LawrenceRA, BainO, AllenJE (2010) Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy. PLoS Biol 8: e1000525.
28. LeggettHC, BenmayorR, HodgsonDJ, BucklingA (2013) Experimental Evolution of Adaptive Phenotypic Plasticity in a Parasite. Curr Biol 23: 139–142.
29. ReeceSE, AliE, SchneiderP, BabikerHA (2010) Stress, drugs and the evolution of reproductive restraint in malaria parasites. Proc R Soc B Biol Sci 277: 3123–3129.
30. PollittLC, MideoN, DrewDR, SchneiderP, ColegraveN, et al. (2011) Competition and the evolution of reproductive restraint in malaria parasites. Am Nat 177: 358–367.
31. HuldenL, HuldenL (2011) Activation of the hypnozoite: a part of Plasmodium vivax life cycle and survival. Malaria J 10: 90.
32. ManwellRD (1929) Relapse in bird malaria. Am J Epidemiol 9: 308–345.
33. AppelgateJE (1970) Population changes in latent avian malaria infections associated with season and corticosterone treatment. J Parasitol 56: 439–443.
34. AppelgateJE, BeaudoinRL (1970) Mechanisms of spring relapse in avian malaria: effects of gonodropin and corticosterone. J Wildlife Dis 6: 443–447.
35. PearsonRD (2002) Is prolactin responsible for avian, saurian, and mammalian relapse and periodicity of fever in malarial infections? Can J Zool 80: 1313–1315.
36. ValkiunasG, BairleinF, IezhovaTA, DolnikOV (2004) Factors affecting the relapse of Haemoproteus belopolskyi infections and the parasitaemia of Trypanosoma spp. in a naturally infected European songbird, the blackcap, Sylvia atricapilla. Parasitol Res 93: 218–222.
37. HuldenL, HuldenL, HeliovaaraK (2008) Natural relapses in vivax malaria induced by Anopheles mosquitoes. Malaria J 7: 64.
38. LawalyR, KonateL, MarramaL, DiaI, DialloD, et al. (2012) Impact of mosquito bites on asexual parasite density and gametocyte prevalence in asymptomatic chronic Plasmodium falciparum infections and correlation with IgE and IgG titers. Infect Immun 80: 2240–2246.
39. BillingsleyPF, SnookLS, JohnstonVJ (2005) Malaria parasite growth is stimulated by mosquito probing. Biol Lett 1: 185–189.
40. ShutlerD, ReeceSE, MullieA, BillingsleyPF, ReadAF (2005) Rodent malaria parasites Plasmodium chabaudi and P. vinckei do not increase their rates of gametocytogenesis in response to mosquito probing. Proc R Soc B Biol Sci 272: 2397–2402.
41. Killick-Kendrick R (1978) Taxonomy, zoology and evolution. In: Killick-Kendrick R, Peters W, editors. Rodent Malaria. London: Academic Press. pp. 1–52.
42. LandauI, ChabaudA (1994) Plasmodium species infecting Thamnomys rutilans: a zoological study. Adv Parasitol 33: 50–90.
43. Roca-FeltrerA, SchellenbergJR, SmithL, CarneiroI (2009) A simple method for defining malaria seasonality. Malaria J 8: 276.
44. Valkiūnas G (2005) Avian Malaria Parasites and Other Haemosporidia. Boca Raton, FL., USA: CRC Press.
45. FrankSA (1996) Models of parasite virulence. Q Rev Biol 71: 37–78.
46. AlizonSA, HurfordA, MideoN, van BaalenM (2009) Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol 22: 245–259.
47. BeldadeP, MateusARA, KellerRA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol 20: 1347–1363.
48. DuneauD, EbertD (2012) Host sexual dimorphism and parasite adaptation. PLoS Biol 10: e1001271.
49. MideoN, ReeceSE (2012) Plasticity in parasite phenotypes: evolutionary and ecological implications for disease. Future Microbiol 7: 17–24.
50. Van Den BergF, BacaërN, MetzJAJ, LannouC, Van Den BoschF (2011) Periodic host absence can select for higher or lower parasite transmission rates. Evol Ecol 25: 121–137.
51. DonnellyR, BestA, WhiteA, BootsM (2013) Seasonality selects for more acutely virulent parasites when virulence is density dependent. Proceedings of the Royal Society B: Biological Sciences, 280(1751). Proc R Soc B Biol Sci 280: 20122464.
52. KoelleK, PascualM, YunusM (2005) Pathogen adaptation to seasonal forcing and climate change. Proc R Soc B Biol Sci 272: 971–977.
53. KamoM, SasakiA (2005) Evolution toward multi-year periodicity in epidemics. Ecol Lett 8: 378–385.
54. CohenD (1967) Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsequent outcome. J Theor Biol 16: 1–14.
55. GavriletsS, ScheinerSM (1993) The genetics of phenotypic plasticity. 5. Evolution of reaction norm shape. J Evol Biol 6: 31–48.
56. LandeR (2009) Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol 22: 1435–1446.
57. Cellier-HolzemE, Esparza-SalasR, GarnierS, SorciG (2010) Effect of repeated exposure to Plasmodium relictum (lineage SGS1) on infection dynamics in domestic canaries. Int J Parasitol 40: 1447–1453.
58. ReeceSE, DrewDR, GardnerA (2008) Sex ratio adjustment and kin discrimination in malaria parasites. Nature 453: 609–614.
59. BabikerHA, SchneiderP, ReeceSE (2008) Gametocytes: insights gained during a decade of molecular monitoring. Trends Parasitol 24: 525–530.
60. Abdel-WahabA, Abdel-MuhsinAMA, AliE, SuleimanS, AhmedS, et al. (2002) Dynamics of gametocytes among Plasmodium falciparum clones in natural infections in an area of highly seasonal transmission. J Infect Dis 185: 1838–1842.
61. SchneiderP, SchooneG, SchalligH, VerhageD, TelgtD, et al. (2004) Quantification of Plasmodium falciparum gametocytes in differential stages of development by quantitative nucleic acid sequence-based amplification. Mol Biochem Parasitol 137: 35–41.
62. SchneiderP, BousemaJT, GouagnaLC, OtienoS, Van de Vegte-BolmerM, et al. (2007) Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg 76: 470–474.
63. OkechBA, GouagnaLC, KabiruEW, BeierJC, YanGY, et al. (2004) Influence of age and previous diet of Anopheles gambiae on the infectivity of natural Plasmodium falciparum gametocytes from human volunteers. J Insect Sci 4: 33.
64. TerzianLA, StahlerN, IrreverreF (1956) The effects of aging, and the modifications of these effects, on the immunity of mosquitoes to malarial infection. J Immunol 76: 308–313.
65. FontaineA, DioufI, BakkaliN, MisseD, PagesF, et al. (2011) Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasites Vectors 4: 187.
66. TitusRG, RibeiroJM (1988) Salivary gland lysates from the sand fly Lutzomyialongipalpis enhance Leishmania infectivity. Science 239: 1306–1308.
67. CameronA, ReeceSE, DrewDR, HaydonDT, YatesAJ (2013) Plasticity in transmission strategies of the malaria parasite, Plasmodium chabaudi: environmental and genetic effects. Evol Appl 6: 365–376.
68. CarterLM, KafsackBFC, LlinasM, MideoN, PollittLC, et al. (2013) Stress and sex in malaria parasites: Why does commitment vary? Evol Med Publ Heath 2013: 135–147.
69. GautretP, CoquelinF, ChabaudAG, LandauI (1997) The production of gametocytes by rodent Plasmodium species in mice during phenylhydrazine induced reticulocytosis. Acta Parasitol 42: 65–67.
70. ReeceSE, DuncanAB, WestSA, ReadAF (2005) Host cell preference and variable transmission strategies in malaria parasites. Proc R Soc B Biol Sci 272: 511–517.
71. PaulREL, CoulsonTN, RaibaudA, BreyPT (2000) Sex determination in malaria parasites. Science 287: 128–131.
72. DrewDR, ReeceSE (2007) Development of reverse-transcription PCR techniques to analyse the density and sex ratio of gametocytes in genetically diverse Plasmodium chabaudi infections. Mol Biochem Parasitol 156: 199–209.
73. MartiniereA, BakA, MaciaJL, LautredouN, GarganiD, et al. (2013) A virus responds instantly to the presence of the vector on the host and forms transmission morphs. eLife 2: e00183.
74. O'DonnellAJ, SchneiderP, McWattersHG, ReeceSE (2011) Fitness costs of disrupting circadian rhythms in malaria parasites. Proc R Soc B Biol Sci 278: 2429–2436.
75. HawkingF, WormsMJ, GammageK, GoddardPA (1966) The biological purpose of the blood-cycle of the malaria parasite Plasmodium cynomolgi. Lancet 288: 422–424.
76. MideoN, ReeceSE, SmithAL, MetcalfCJE (2013) The Cinderella syndrome: why do malaria-infected cells burst at midnight? Trends Parasitol 29: 10–16.
77. GreischarMA, ReadAF, BjørnstadON (2014) Synchrony in malaria infections: How intensifying within-host competition can be adaptive. Am Nat 183: E36–E49.
78. MayxayM, PukrittayakameeS, NewtonPN, WhiteNJ (2004) Mixed-species malaria infections in humans. Trends Parasitol 20: 233–240.
79. ValkiūnasG, BenschS, IezhovaTA, KrižanauskienėA, HellgrenO, et al. (2006) Nested cytochrome b polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. J Parasitol 92: 418–422.
80. ShanksGD, WhiteNJ (2013) The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect Dis 13: 900–906.
81. ChenNH, AuliffA, RieckmannK, GattonM, ChengQ (2007) Relapses of Plasmodium vivax infection result from clonal hypnozoites activated at predetermined intervals. J Infect Dis 195: 934–941.
82. ImwongM, SnounouG, PukrittayakameeS, TanomsingN, KimJR, et al. (2007) Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J Infect Dis 195: 927–933.
83. BenschS, HellgrenO, Perez-TrisJ (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9: 1353–1358.
84. BousemaT, GriffinJT, SauerweinRW, SmithDL, ChurcherTS, et al. (2012) Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med 9: e1001165.
85. GildenD, MahalingamR, NagelMA, PugazhenthiS, CohrsRJ (2011) Review: the neurobiology of varicella zoster virus infection. Neuropath Appl Neurobiol 37: 441–463.
86. WilsonAC, MohrI (2012) A cultured affair: HSV latency and reactivation in neurons. Trends Microbiol 20: 604–611.
87. CardonaPJ, Ruiz-ManzanoJ (2004) On the nature of Mycobacterium tuberculosis-latent bacilli. Eur Respir J 24: 1044–1051.
88. MarcelloA (2006) Latency: the hidden HIV-1 challenge. Retrovirology 3: 7.
89. PerngGC, JonesC (2010) Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdisc Persp Infect Dis vol 2010: 262415.
90. LiebermanPM (2013) Keeping it quiet: chromatin control of gammaherpesvirus latency. Nature Rev Microbiol 11: 863–875.
91. SpinaCA, AndersonJ, ArchinNM, BosqueA, ChanJ, et al. (2013) An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 9: e1003834.
92. KimuraM, DarbroJM, HarringtonLC (2010) Avian malaria parasites share congeneric mosquito vectors. J Parasitol 96: 144–151.
93. LalubinF, DelédevantA, GlaizotO, ChristeP (2013) Temporal changes in mosquito abundance (Culex pipiens), avian malaria prevalence and lineage composition. Parasites Vectors 6: 307.
94. VézilierJ, NicotA, GandonS, RiveroA (2010) Insecticide resistance and malaria transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with Plasmodium relictum. Malaria J 9: 379.
95. GriffithsR, DoubleMC, OrrK, DawsonRJG (1998) A DNA test to sex most birds. Mol Ecol 7: 1071–1075.
96. WaldenströmJ, BenschS, HasselquistD, OstmanO (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90: 191–194.
97. CornetS, NicotA, RiveroA, GandonS (2013) Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol Lett 16: 323–329.
98. HuffCG (1947) Life cycle of malarial parasites. Annual Reviews in Microbiology 1: 43–60.
99. GriffingSM, KilpatrickAM, ClarkL, MarraPP (2007) Mosquito landing rates on nesting American robins (Turdus migratorius). Vector-Borne Zoo Dis 7: 437–443.
100. Crawley MJ (2007) The R Book. England: John Wiley & Sons, Ltd.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7
- The Ins and Outs of Rust Haustoria
- Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells
- RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms