Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum
article has not abstract
Vyšlo v časopise:
Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004273
Kategorie:
Review
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004273
Souhrn
article has not abstract
Zdroje
1. AikawaM, MillerLH, JohnsonJ, RabbegeJ (1978) Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol 77: 72–82.
2. KingCA (1988) Cell motility of sporozoan protozoa. Parasitol Today 4: 315–319.
3. RussellDG, SindenRE (1981) The role of the cytoskeleton in the motility of coccidian sporozoites. J Cell Sci 50: 345–359.
4. RussellDG (1983) Host cell invasion by Apicomplexa: an expression of the parasite's contractile system? Parasitology 87 (Pt 2): 199–209.
5. SchwartzmanJD, PfefferkornER (1983) Immunofluorescent localization of myosin at the anterior pole of the coccidian, Toxoplasma gondii. J Protozool 30: 657–661.
6. PinderJC, FowlerRE, DluzewskiAR, BannisterLH, LavinFM, et al. (1998) Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion. J Cell Sci 111 (Pt 13): 1831–1839.
7. DobrowolskiJM, SibleyLD (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84: 933–939.
8. MorisakiJH, HeuserJE, SibleyLD (1995) Invasion of Toxoplasma gondii occurs by active penetration of the host cell. J Cell Sci 108 (Pt 6): 2457–2464.
9. GonzalezV, CombeA, DavidV, MalmquistNA, DelormeV, et al. (2009) Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. Cell Host Microbe 5: 259–272.
10. Delorme-WalkerV, AbrivardM, LagalV, AndersonK, PerazziA, et al. (2012) Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion. J Cell Sci 125: 4333–4342.
11. DelormeV, CaylaX, FaureG, GarciaA, TardieuxI (2003) Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin. Mol Biol Cell 14: 1900–1912.
12. MorrissetteNS, MurrayJM, RoosDS (1997) Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. J Cell Sci 110 (Pt 1): 35–42.
13. SultanAA, ThathyV, FrevertU, RobsonKJ, CrisantiA, et al. (1997) TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell 90: 511–522.
14. MeissnerM, SchluterD, SoldatiD (2002) Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298: 837–840.
15. JewettTJ, SibleyLD (2003) Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell 11: 885–894.
16. BergmanLW, KaiserK, FujiokaH, CoppensI, DalyTM, et al. (2003) Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. J Cell Sci 116: 39–49.
17. SchulerH, MatuschewskiK (2006) Regulation of apicomplexan microfilament dynamics by a minimal set of actin-binding proteins. Traffic 7: 1433–1439.
18. SkillmanKM, DiraviyamK, KhanA, TangK, SeptD, et al. (2011) Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. PLoS Pathog 7: e1002280.
19. MehtaS, SibleyLD (2011) Actin depolymerizing factor controls actin turnover and gliding motility in Toxoplasma gondii. Mol Biol Cell 22: 1290–1299.
20. BaumJ, TonkinCJ, PaulAS, RugM, SmithBJ, et al. (2008) A malaria parasite formin regulates actin polymerization and localizes to the parasite-erythrocyte moving junction during invasion. Cell Host Microbe 3: 188–198.
21. DaherW, PlattnerF, CarlierMF, Soldati-FavreD (2010) Concerted action of two formins in gliding motility and host cell invasion by Toxoplasma gondii. PLoS Pathog 6: e1001132.
22. AngrisanoF, RiglarDT, SturmA, VolzJC, DelvesMJ, et al. (2012) Spatial localisation of actin filaments across developmental stages of the malaria parasite. PLoS ONE 7: e32188.
23. MehtaS, SibleyLD (2010) Toxoplasma gondii actin depolymerizing factor acts primarily to sequester G-actin. J Biol Chem 285: 6835–6847.
24. SkillmanKM, DaherW, MaCI, Soldati-FavreD, SibleyLD (2012) Toxoplasma gondii profilin acts primarily to sequester G-actin while formins efficiently nucleate actin filament formation in vitro. Biochemistry 51: 2486–2495.
25. PlattnerF, YarovinskyF, RomeroS, DidryD, CarlierMF, et al. (2008) Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 3: 77–87.
26. ShenB, SibleyLD (2014) Toxoplasma aldolase is required for metabolism but dispensable for host-cell invasion. Proc Natl Acad Sci U S A 111: 3567–3572.
27. StarnesGL, CoinconM, SyguschJ, SibleyLD (2009) Aldolase is essential for energy production and bridging adhesin-actin cytoskeletal interactions during parasite invasion of host cells. Cell Host Microbe 5: 353–364.
28. PomelS, LukFC, BeckersCJ (2008) Host cell egress and invasion induce marked relocations of glycolytic enzymes in Toxoplasma gondii tachyzoites. PLoS Pathog 4: e1000188.
29. GaskinsE, GilkS, DeVoreN, MannT, WardG, et al. (2004) Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 165: 383–393.
30. GilkSD, GaskinsE, WardGE, BeckersCJ (2009) GAP45 phosphorylation controls assembly of the Toxoplasma myosin XIV complex. Eukaryot Cell 8: 190–196.
31. FrenalK, PolonaisV, MarqJB, StratmannR, LimenitakisJ, et al. (2010) Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 8: 343–357.
32. EgarterS, AndenmattenN, JacksonAJ, WhitelawJA, PallG, et al. (2014) The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion. PLoS ONE 9: e91819.
33. MunterS, SabassB, Selhuber-UnkelC, KudryashevM, HeggeS, et al. (2009) Plasmodium sporozoite motility is modulated by the turnover of discrete adhesion sites. Cell Host Microbe 6: 551–562.
34. HellmannJK, PerschmannN, SpatzJP, FrischknechtF (2013) Tunable substrates unveil chemical complementation of a genetic cell migration defect. Adv Healthc Mater 2: 1162–1169.
35. GilbergerTW, ThompsonJK, ReedMB, GoodRT, CowmanAF (2003) The cytoplasmic domain of the Plasmodium falciparum ligand EBA-175 is essential for invasion but not protein trafficking. J Cell Biol 162: 317–327.
36. SinghAP, OzwaraH, KockenCH, PuriSK, ThomasAW, et al. (2005) Targeted deletion of Plasmodium knowlesi Duffy binding protein confirms its role in junction formation during invasion. Mol Microbiol 55: 1925–1934.
37. GunalanK, GaoX, YapSS, HuangX, PreiserPR (2013) The role of the reticulocyte-binding-like protein homologues of Plasmodium in erythrocyte sensing and invasion. Cell Microbiol 15: 35–44.
38. GunalanK, GaoX, LiewKJ, PreiserPR (2011) Differences in erythrocyte receptor specificity of different parts of the Plasmodium falciparum reticulocyte binding protein homologue 2a. Infect Immun 79: 3421–3430.
39. BaumJ, ChenL, HealerJ, LopatickiS, BoyleM, et al. (2009) Reticulocyte-binding protein homologue 5 - an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol 39: 371–380.
40. ItoD, HasegawaT, MiuraK, YamasakiT, ArumugamTU, et al. (2013) RALP1 is a rhoptry neck erythrocyte-binding protein of Plasmodium falciparum merozoites and a potential blood-stage vaccine candidate antigen. Infect Immun 81: 4290–4298.
41. KesslerH, Herm-GotzA, HeggeS, RauchM, Soldati-FavreD, et al. (2008) Microneme protein 8—a new essential invasion factor in Toxoplasma gondii. J Cell Sci 121: 947–956.
42. MorahanBJ, WangL, CoppelRL (2009) No TRAP, no invasion. Trends in Parasitology 25: 77–84.
43. HuynhMH, CarruthersVB (2006) Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog 2: e84.
44. SongG, KoksalAC, LuC, SpringerTA (2012) Shape change in the receptor for gliding motility in Plasmodium sporozoites. Proc Natl Acad Sci U S A 109: 21420–21425.
45. RamakrishnanC, DessensJT, ArmsonR, PintoSB, TalmanAM, et al. (2011) Vital functions of the malarial ookinete protein, CTRP, reside in the A domains. Int J Parasitol 41: 1029–1039.
46. AlexanderDL, MitalJ, WardGE, BradleyP, BoothroydJC (2005) Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 1: e17.
47. LebrunM, MichelinA, El HajjH, PoncetJ, BradleyPJ, et al. (2005) The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 7: 1823–1833.
48. RiglarDT, RichardD, WilsonDW, BoyleMJ, DekiwadiaC, et al. (2011) Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 9: 9–20.
49. DeansJA, AldersonT, ThomasAW, MitchellGH, LennoxES, et al. (1982) Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. Clin Exp Immunol 49: 297–309.
50. ThomasAW, TrapeJF, RogierC, GoncalvesA, RosarioVE, et al. (1994) High prevalence of natural antibodies against Plasmodium falciparum 83-kilodalton apical membrane antigen (PF83/AMA-1) as detected by capture-enzyme-linked immunosorbent assay using full-length baculovirus recombinant PF83/AMA-1. Am J Trop Med Hyg 51: 730–740.
51. RemarqueEJ, FaberBW, KockenCH, ThomasAW (2008) Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol 24: 74–84.
52. LaurensMB, TheraMA, CoulibalyD, OuattaraA, KoneAK, et al. (2013) Extended safety, immunogenicity and efficacy of a blood-stage malaria vaccine in malian children: 24-month follow-up of a randomized, double-blinded phase 2 trial. PLoS ONE 8: e79323.
53. PoukchanskiA, FritzHM, TonkinML, TreeckM, BoulangerMJ, et al. (2013) Toxoplasma gondii sporozoites invade host cells using two novel paralogues of RON2 and AMA1. PLoS ONE 8: e70637.
54. NarumDL, NguyenV, ZhangY, GlenJ, ShimpRL, et al. (2008) Identification and characterization of the Plasmodium yoelii PyP140/RON4 protein, an orthologue of Toxoplasma gondii RON4, whose cysteine-rich domain does not protect against lethal parasite challenge infection. Infect Immun 76: 4876–4882.
55. StraubKW, ChengSJ, SohnCS, BradleyPJ (2009) Novel components of the Apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cell Microbiol 11: 590–603.
56. LamarqueM, BesteiroS, PapoinJ, RoquesM, Vulliez-Le NormandB, et al. (2011) The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 7: e1001276.
57. TylerJS, BoothroydJC (2011) The C-terminus of Toxoplasma RON2 provides the crucial link between AMA1 and the host-associated invasion complex. PLoS Pathog 7: e1001282.
58. BesteiroS, MichelinA, PoncetJ, DubremetzJF, LebrunM (2009) Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 5: e1000309.
59. TakemaeH, SugiT, KobayashiK, GongH, IshiwaA, et al. (2013) Characterization of the interaction between Toxoplasma gondii rhoptry neck protein 4 and host cellular beta-tubulin. Sci Rep 3: 3199.
60. TonkinML, RoquesM, LamarqueMH, PugniereM, DouguetD, et al. (2011) Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 333: 463–467.
61. Vulliez-Le NormandB, TonkinML, LamarqueMH, LangerS, HoosS, et al. (2012) Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 8: e1002755.
62. CollinsCR, Withers-MartinezC, HackettF, BlackmanMJ (2009) An inhibitory antibody blocks interactions between components of the malarial invasion machinery. PLoS Pathog 5: e1000273.
63. RichardD, MacRaildCA, RiglarDT, ChanJA, FoleyM, et al. (2010) Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem 285: 14815–14822.
64. SrinivasanP, BeattyWL, DioufA, HerreraR, AmbroggioX, et al. (2011) Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 108: 13275–13280.
65. SrinivasanP, YasgarA, LuciDK, BeattyWL, HuX, et al. (2013) Disrupting malaria parasite AMA1-RON2 interaction with a small molecule prevents erythrocyte invasion. Nat Commun 4: 2261.
66. BaumJ, CowmanAF (2011) Biochemistry. Revealing a parasite's invasive trick. Science 333: 410–411.
67. ShenB, SibleyLD (2012) The moving junction, a key portal to host cell invasion by apicomplexan parasites. Curr Opin Microbiol 15: 449–455.
68. MacraildCA, AndersRF, FoleyM, NortonRS (2011) Apical membrane antigen 1 as an anti-malarial drug target. Curr Top Med Chem 11: 2039–2047.
69. MillerLH, AckermanHC, SuXZ, WellemsTE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19: 156–167.
70. AndenmattenN, EgarterS, JacksonAJ, JullienN, HermanJP, et al. (2013) Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat Methods 10: 125–127.
71. CombeA, GiovanniniD, CarvalhoTG, SpathS, BoissonB, et al. (2009) Clonal conditional mutagenesis in malaria parasites. Cell Host Microbe 5: 386–396.
72. GiovanniniD, SpathS, LacroixC, PerazziA, BargieriD, et al. (2011) Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. Cell Host Microbe 10: 591–602.
73. Murata E, Tokunaga N, Tachibana M, Tsuboi T, Torii M, et al. (2012) The investigation of the mechanism how malaria sporozoites invade salivary glands. Molecular Approaches to Malaria Meeting 2012. Abstract Book. Lorne, Australia.
74. BeckJR, ChenAL, kimEW, BradleyPJ (2014) RON5 is critical for organization and function of the Toxoplasma moving junction complex. PLoS Pathog 10: e1004025.
75. LamarqueMH, RoquesM, Kong-HapM, TonkinML, RugarabamuG, et al. (2014) Plasticity and redundancy among AMA-RON pairs ensure host cell entry of Toxoplasma parasites. Nat Commun 5: 4098.
76. BargieriDY, AndenmattenN, LagalV, ThibergeS, WhitelawJA, et al. (2013) Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. Nat Commun 4: 2552.
77. YapA, AzevedoMF, GilsonPR, WeissGE, O'NeillMT, et al. (2014) Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol 16: 642–656.
78. MitalJ, MeissnerM, SoldatiD, WardGE (2005) Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 16: 4341–4349.
79. MitchellGH, ThomasAW, MargosG, DluzewskiAR, BannisterLH (2004) Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. Infect Immun 72: 154–158.
80. FraserTS, KappeSH, NarumDL, VanBuskirkKM, AdamsJH (2001) Erythrocyte-binding activity of Plasmodium yoelii apical membrane antigen-1 expressed on the surface of transfected COS-7 cells. Mol Biochem Parasitol 117: 49–59.
81. UrquizaM, SuarezJE, CardenasC, LopezR, PuentesA, et al. (2000) Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein. Vaccine 19: 508–513.
82. ValbuenaJ, RodriguezL, VeraR, PuentesA, CurtidorH, et al. (2006) Synthetic peptides from Plasmodium falciparum apical membrane antigen 1 (AMA-1) specifically interacting with human hepatocytes. Biochimie 88: 1447–1455.
83. KatoK, MayerDC, SinghS, ReidM, MillerLH (2005) Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. Proc Natl Acad Sci U S A 102: 5552–5557.
84. PoukchanskiA, FritzHM, TonkinML, TreeckM, BoulangerMJ, et al. (2013) Toxoplasma gondii sporozoites invade host cells using two novel paralogues of RON2 and AMA1. PLoS ONE 8: e70637.
85. KariuT, YudaM, YanoK, ChinzeiY (2002) MAEBL is essential for malarial sporozoite infection of the mosquito salivary gland. J Exp Med 195: 1317–1323.
86. SaenzFE, BaluB, SmithJ, MendoncaSR, AdamsJH (2008) The transmembrane isoform of Plasmodium falciparum MAEBL is essential for the invasion of Anopheles salivary glands. PLoS ONE 3: e2287.
87. OlivieriA, CollinsCR, HackettF, Withers-MartinezC, MarshallJ, et al. (2011) Juxtamembrane shedding of Plasmodium falciparum AMA1 is sequence independent and essential, and helps evade invasion-inhibitory antibodies. PLoS Pathog 7: e1002448.
88. ParussiniF, TangQ, MoinSM, MitalJ, UrbanS, et al. (2012) Intramembrane proteolysis of Toxoplasma apical membrane antigen 1 facilitates host-cell invasion but is dispensable for replication. Proc Natl Acad Sci U S A 109: 7463–7468.
89. ShawMK (2003) Cell invasion by Theileria sporozoites. Trends Parasitol 19: 2–6.
90. MitchisonTJ, CharrasGT, MahadevanL (2008) Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Semin Cell Dev Biol 19: 215–223.
91. KerenK, YamPT, KinkhabwalaA, MogilnerA, TheriotJA (2009) Intracellular fluid flow in rapidly moving cells. Nat Cell Biol 11: 1219–1224.
92. MoeendarbaryE, ValonL, FritzscheM, HarrisAR, MouldingDA, et al. (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12: 253–261.
93. FranciaME, WicherS, PaceDA, SullivanJ, MorenoSN, et al. (2011) A Toxoplasma gondii protein with homology to intracellular type Na(+)/H(+) exchangers is important for osmoregulation and invasion. Exp Cell Res 317: 1382–1396.
94. KarasovAO, BoothroydJC, ArrizabalagaG (2005) Identification and disruption of a rhoptry-localized homologue of sodium hydrogen exchangers in Toxoplasma gondii. Int J Parasitol 35: 285–291.
95. ArrizabalagaG, RuizF, MorenoS, BoothroydJC (2004) Ionophore-resistant mutant of Toxoplasma gondii reveals involvement of a sodium/hydrogen exchanger in calcium regulation. J Cell Biol 165: 653–662.
96. EndoT, TokudaH, YagitaK, KoyamaT (1987) Effects of extracellular potassium on acid release and motility initiation in Toxoplasma gondii. J Protozool 34: 291–295.
97. EndoT, YagitaK (1990) Effect of extracellular ions on motility and cell entry in Toxoplasma gondii. J Protozool 37: 133–138.
98. ValigurovaA, JirkuM, KoudelaB, GelnarM, ModryD, et al. (2008) Cryptosporidia: epicellular parasites embraced by the host cell membrane. Int J Parasitol 38: 913–922.
99. ChenXM, O'HaraSP, HuangBQ, SplinterPL, NelsonJB, et al. (2005) Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. Proc Natl Acad Sci U S A 102: 6338–6343.
100. KappeS, BrudererT, GanttS, FujiokaH, NussenzweigV, et al. (1999) Conservation of a gliding motility and cell invasion machinery in apicomplexan parasites. J Cell Biol 147: 937–943.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7
- The Ins and Outs of Rust Haustoria
- Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells
- RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms