LprG-Mediated Surface Expression of Lipoarabinomannan Is Essential for Virulence of
Mycobacterium tuberculosis is among the leading infectious causes of human death. A better understanding of its virulence mechanisms is needed to facilitate development of novel therapeutics and a preventative vaccine. Lipoarabinomannan (LAM), an abundant surface-exposed lipoglycan, is believed to be a critical virulence determinant for intracellular survival and latency of M. tuberculosis. In vitro experiments with purified LAM have led to a model in which surface-exposed LAM binds to macrophage mannose receptor and facilitates bacterium entry, inhibition of phagosome-lysosome fusion, and modulation of innate immune responses. However, confirmation of these findings in vivo has not been possible due to the essentiality of genes involved in the LAM biosynthetic pathway. It was recently shown that LprG, a cell envelope lipoprotein, binds to the acyl groups of lipoglycan, but the role of LprG in LAM biosynthesis and localization remains unknown. Here, using an M. tuberculosis lprG mutant and a novel cell-imprinting assay, we show that LprG is essential for normal surface expression of LAM and virulence of M. tuberculosis attributed to LAM. Our study provides new insights into the mechanism of surface expression of LAM and confirms the essential role surface LAM serves in pathogenesis of M. tuberculosis.
Vyšlo v časopise:
LprG-Mediated Surface Expression of Lipoarabinomannan Is Essential for Virulence of. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004376
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004376
Souhrn
Mycobacterium tuberculosis is among the leading infectious causes of human death. A better understanding of its virulence mechanisms is needed to facilitate development of novel therapeutics and a preventative vaccine. Lipoarabinomannan (LAM), an abundant surface-exposed lipoglycan, is believed to be a critical virulence determinant for intracellular survival and latency of M. tuberculosis. In vitro experiments with purified LAM have led to a model in which surface-exposed LAM binds to macrophage mannose receptor and facilitates bacterium entry, inhibition of phagosome-lysosome fusion, and modulation of innate immune responses. However, confirmation of these findings in vivo has not been possible due to the essentiality of genes involved in the LAM biosynthetic pathway. It was recently shown that LprG, a cell envelope lipoprotein, binds to the acyl groups of lipoglycan, but the role of LprG in LAM biosynthesis and localization remains unknown. Here, using an M. tuberculosis lprG mutant and a novel cell-imprinting assay, we show that LprG is essential for normal surface expression of LAM and virulence of M. tuberculosis attributed to LAM. Our study provides new insights into the mechanism of surface expression of LAM and confirms the essential role surface LAM serves in pathogenesis of M. tuberculosis.
Zdroje
1. World Health Organization. Global tuberculosis report 2013. Available: http://apps.who.int/iris/bitstream/10665/91355/1/9789241564656_eng.pdf?ua=1 Accessed 10MMarch2014.
2. PhilipsJA, ErnstJD (2012) Tuberculosis pathogenesis and immunity. Annu Rev Pathol 7: 353–384.
3. SmithI (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16: 463–496.
4. BrennanPJ, NikaidoH (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 29–63.
5. JarlierV, NikaidoH (1994) Mycobacterial cell wall: Structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123: 11–18.
6. SaniM, HoubenEN, GeurtsenJ, PiersonJ, de PunderK, et al. (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: A labile structure containing ESX-1-secreted proteins. PLoS Pathog 6: e1000794.
7. PitarqueS, Larrouy-MaumusG, PayreB, JacksonM, PuzoG, et al. (2008) The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis 88: 560–565.
8. MishraAK, DriessenNN, AppelmelkBJ, BesraGS (2011) Lipoarabinomannan and related glycoconjugates: Structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol Rev 35: 1126–1157.
9. BrikenV, PorcelliSA, BesraGS, KremerL (2004) Mycobacterial lipoarabinomannan and related lipoglycans: From biogenesis to modulation of the immune response. Mol Microbiol 53: 391–403.
10. HunterSW, BrennanPJ (1990) Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J Biol Chem 265: 9272–9279.
11. StrohmeierGR, FentonMJ (1999) Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect 1: 709–717.
12. ChuaJ, VergneI, MasterS, DereticV (2004) A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Curr Opin Microbiol 7: 71–77.
13. HmamaZ, SendideK, TalalA, GarciaR, DobosK, et al. (2004) Quantitative analysis of phagolysosome fusion in intact cells: Inhibition by mycobacterial lipoarabinomannan and rescue by an 1α,25-dihydroxyvitamin D3-phosphoinositide 3-kinase pathway. J Cell Sci 117: 2131–2140.
14. KangPB, AzadAK, TorrellesJB, KaufmanTM, BeharkaA, et al. (2005) The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202: 987–999.
15. SchlesingerLS (1993) Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150: 2920–2930.
16. VilleneuveC, GilleronM, Maridonneau-PariniI, DaffeM, Astarie-DequekerC, et al. (2005) Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process. J Lipid Res 46: 475–483.
17. SutcliffeIC, RussellRR (1995) Lipoproteins of gram-positive bacteria. J Bacteriol 177: 1123–1128.
18. DrageMG, TsaiHC, PecoraND, ChengTY, AridaAR, et al. (2010) Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of toll-like receptor 2. Nat Struct Mol Biol 17: 1088–1095.
19. ColeST, BroschR, ParkhillJ, GarnierT, ChurcherC, et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–544.
20. BiancoMV, BlancoFC, ImperialeB, ForrelladMA, RochaRV, et al. (2011) Role of P27–P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds. BMC Infect Dis 11: 1–9.
21. FarrowMF, RubinEJ (2008) Function of a mycobacterial major facilitator superfamily pump requires a membrane-associated lipoprotein. J Bacteriol 190: 1783–1791.
22. SassettiCM, RubinEJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100: 12989–12994.
23. BigiF, GioffreA, KleppL, SantangeloMP, AlitoA, et al. (2004) The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis. Microbes Infect 6: 182–187.
24. Ortalo-MagneA, DupontMA, LemassuA, AndersenAB, GounonP, et al. (1995) Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141: 1609–1620.
25. SchirhaglR, HallEW, FuerederI, ZareRN (2012) Separation of bacteria with imprinted polymeric films. Analyst 137: 1495–1499.
26. RenK, ZareRN (2012) Chemical recognition in cell-imprinted polymers. ACS Nano 6: 4314–4318.
27. BanaeiN, KincaidEZ, LinSY, DesmondE, JacobsWRJr, et al. (2009) Lipoprotein processing is essential for resistance of Mycobacterium tuberculosis to malachite green. Antimicrob Agents Chemother 53: 3799–3802.
28. SinghA, CrossmanDK, MaiD, GuidryL, VoskuilMI, et al. (2009) Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 5: e1000545.
29. DesvignesL, ErnstJD (2009) Interferon-γ-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31: 974–985.
30. Ramon-GarciaS, MartinC, ThompsonCJ, AinsaJA (2009) Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother 53: 3675–3682.
31. ChanJ, FanXD, HunterSW, BrennanPJ, BloomBR (1991) Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 59: 1755–1761.
32. GargA, BarnesPF, RoyS, QuirogaMF, WuS, et al. (2008) Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol 38: 459–469.
33. EhlersS (2010) DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: A deceptive liaison. Eur J Cell Biol 89: 95–101.
34. AdamsKN, TakakiK, ConnollyLE, WiedenhoftH, WingleeK, et al. (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145: 39–53.
35. GuptaS, TyagiS, AlmeidaDV, MaigaMC, AmmermanNC, et al. (2013) Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am J Respir Crit Care Med 188: 600–607.
36. BardarovS, BardarovSJr, Jr, PavelkaMSJr, Jr, SambandamurthyV, LarsenM, et al. (2002) Specialized transduction: An efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148: 3007–3017.
37. BanaieeN, JacobsWRJr, ErnstJD (2006) Regulation of Mycobacterium tuberculosis whiB3 in the mouse lung and macrophages. Infect Immun 74: 6449–6457.
38. BanaieeN, KincaidEZ, BuchwaldU, JacobsWRJr, ErnstJD (2006) Potent inhibition of macrophage responses to IFN-γ by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J Immunol 176: 3019–3027.
39. KaurD, BergS, DinadayalaP, GicquelB, ChatterjeeD, et al. (2006) Biosynthesis of mycobacterial lipoarabinomannan: Role of a branching mannosyltransferase. Proc Natl Acad Sci U S A 103: 13664–13669.
40. StadthagenG, KordulakovaJ, GriffinR, ConstantP, BottovaI, et al. (2005) p-hydroxybenzoic acid synthesis in Mycobacterium tuberculosis. J Biol Chem 280: 40699–40706.
41. RousseauC, SirakovaTD, DubeyVS, BordatY, KolattukudyPE, et al. (2003) Virulence attenuation of two mas-like polyketide synthase mutants of Mycobacterium tuberculosis. Microbiology 149: 1837–1847.
42. ShuiG, BendtAK, PetheK, DickT, WenkMR (2007) Sensitive profiling of chemically diverse bioactive lipids. J Lipid Res 48: 1976–1984.
43. McNeilM, ChatterjeeD, HunterSW, BrennanPJ (1989) Mycobacterial glycolipids: Isolation, structures, antigenicity, and synthesis of neoantigens. Methods Enzymol 179: 215–242.
44. N'DiayeEN, DarzacqX, Astarie-DequekerC, DaffeM, CalafatJ, et al. (1998) Fusion of azurophil granules with phagosomes and activation of the tyrosine kinase hck are specifically inhibited during phagocytosis of mycobacteria by human neutrophils. J Immunol 161: 4983–4991.
45. DesaiSD, ReedRE, BabuS, LorioEA (2013) ISG15 deregulates autophagy in genotoxin-treated ataxia telangiectasia cells. J Biol Chem 288: 2388–2402.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7
- The Ins and Outs of Rust Haustoria
- Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells
- RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms