Structural Insight into Host Recognition by Aggregative Adherence Fimbriae of Enteroaggregative
Enteroaggregative Escherichia coli (EAEC) is a major cause of diarrhea worldwide and is commonly present as an infection in symptomatic travelers returning from developing countries. The attachment of EAEC to the human intestine is mediated protein filaments extending from the bacterial surface known as aggregative adherence fimbria (AAF). Here we use X-ray crystallography and nuclear magnetic resonance (NMR) structures to provide an atomic structure of the protein fibers made by the two major variants, AAF/I and AAF/II. The structures of the major subunit proteins show that the AAFs assemble into flexible, linear polymers that are capped by a single minor protein subunit at the tip. Biochemical assays reveal that the AAFs recognize a common receptor, the extracellular matrix protein fibronectin, via clusters of positively-charged amino acid residues running along the length of the fimbriae. Our structures suggest a unique mechanism based on ionic interactions for AAF-mediated receptor binding and biofilm formation.
Vyšlo v časopise:
Structural Insight into Host Recognition by Aggregative Adherence Fimbriae of Enteroaggregative. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004404
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004404
Souhrn
Enteroaggregative Escherichia coli (EAEC) is a major cause of diarrhea worldwide and is commonly present as an infection in symptomatic travelers returning from developing countries. The attachment of EAEC to the human intestine is mediated protein filaments extending from the bacterial surface known as aggregative adherence fimbria (AAF). Here we use X-ray crystallography and nuclear magnetic resonance (NMR) structures to provide an atomic structure of the protein fibers made by the two major variants, AAF/I and AAF/II. The structures of the major subunit proteins show that the AAFs assemble into flexible, linear polymers that are capped by a single minor protein subunit at the tip. Biochemical assays reveal that the AAFs recognize a common receptor, the extracellular matrix protein fibronectin, via clusters of positively-charged amino acid residues running along the length of the fimbriae. Our structures suggest a unique mechanism based on ionic interactions for AAF-mediated receptor binding and biofilm formation.
Zdroje
1. NataroJP, KaperJB, Robins-BrowneR, PradoV, VialP, et al. (1987) Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr Infect Dis J 6: 829–831.
2. OkhuysenPC, DupontHL (2010) Enteroaggregative Escherichia coli (EAEC): a cause of acute and persistent diarrhea of worldwide importance. J Infect Dis 202: 503–505.
3. WankeCA, SchorlingJB, BarrettLJ, DesouzaMA, GuerrantRL (1991) Potential role of adherence traits of Escherichia coli in persistent diarrhea in an urban Brazilian slum. Pediatr Infect Dis J 10: 746–751.
4. MathewsonJJ, JiangZD, ZumlaA, ChintuC, LuoN, et al. (1995) HEp-2 cell-adherent Escherichia coli in patients with human immunodeficiency virus-associated diarrhea. J Infect Dis 171: 1636–1639.
5. JiangZD, GreenbergD, NataroJP, SteffenR, DuPontHL (2002) Rate of occurrence and pathogenic effect of enteroaggregative Escherichia coli virulence factors in international travelers. J Clin Microbiol 40: 4185–4190.
6. MuniesaM, HammerlJA, HertwigS, AppelB, BrussowH (2012) Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol 78: 4065–4073.
7. NataroJP (2011) Outbreak of hemolytic-uremic syndrome linked to Shiga toxin-producing enteroaggregative Escherichia coli O104:H4. Pediatr Res 70: 221.
8. FrankC, WerberD, CramerJP, AskarM, FaberM, et al. (2011) Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med 365: 1771–1780.
9. NataroJP, YikangD, GironJA, SavarinoSJ, KotharyMH, et al. (1993) Aggregative adherence fimbria I expression in enteroaggregative Escherichia coli requires two unlinked plasmid regions. Infect Immun 61: 1126–1131.
10. CzeczulinJR, BalepurS, HicksS, PhillipsA, HallR, et al. (1997) Aggregative adherence fimbria II, a second fimbrial antigen mediating aggregative adherence in enteroaggregative Escherichia coli. Infect Immun 65: 4135–4145.
11. BernierC, GounonP, Le BouguenecC (2002) Identification of an aggregative adhesion fimbria (AAF) type III-encoding operon in enteroaggregative Escherichia coli as a sensitive probe for detecting the AAF-encoding operon family. Infect Immun 70: 4302–4311.
12. BoisenN, StruveC, ScheutzF, KrogfeltKA, NataroJP (2008) New adhesin of enteroaggregative Escherichia coli related to the Afa/Dr/AAF family. Infect Immun 76: 3281–3292.
13. SheikhJ, HicksS, Dall'AgnolM, PhillipsAD, NataroJP (2001) Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol 41: 983–997.
14. BuschA, WaksmanG (2012) Chaperone–usher pathways: diversity and pilus assembly mechanism. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 1112–1122.
15. NuccioS-P, BäumlerAJ (2007) Evolution of the Chaperone/Usher Assembly Pathway: Fimbrial Classification Goes Greek. Microbiology and Molecular Biology Reviews 71: 551–575.
16. Zav'yalovV, ZavialovA, Zav'yalovaG, KorpelaT (2010) Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol Rev 34: 317–378.
17. ZavialovA, Zav'yalovaG, KorpelaT, Zav'yalovV (2007) FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol Rev 31: 478–514.
18. JouveM, GarciaMI, CourcouxP, LabigneA, GounonP, et al. (1997) Adhesion to and invasion of HeLa cells by pathogenic Escherichia coli carrying the afa-3 gene cluster are mediated by the AfaE and AfaD proteins, respectively. Infect Immun 65: 4082–4089.
19. KorotkovaN, Yarova-YarovayaY, TchesnokovaV, YazvenkoN, CarlMA, et al. (2008) Escherichia coli DraE adhesin-associated bacterial internalization by epithelial cells is promoted independently by decay-accelerating factor and carcinoembryonic antigen-related cell adhesion molecule binding and does not require the DraD invasin. Infect Immun 76: 3869–3880.
20. ZalewskaB, PiatekR, BuryK, SametA, NowickiB, et al. (2005) A surface-exposed DraD protein of uropathogenic Escherichia coli bearing Dr fimbriae may be expressed and secreted independently from DraC usher and DraE adhesin. Microbiology 151: 2477–2486.
21. HarringtonSM, StraumanMC, AbeCM, NataroJP (2005) Aggregative adherence fimbriae contribute to the inflammatory response of epithelial cells infected with enteroaggregative Escherichia coli. Cell Microbiol 7: 1565–1578.
22. VelardeJJ, VarneyKM, InmanKG, FarfanM, DudleyE, et al. (2007) Solution structure of the novel dispersin protein of enteroaggregative Escherichia coli. Mol Microbiol 66: 1123–1135.
23. FarfanMJ, InmanKG, NataroJP (2008) The major pilin subunit of the AAF/II fimbriae from enteroaggregative Escherichia coli mediates binding to extracellular matrix proteins. Infect Immun 76: 4378–4384.
24. BernierC, GounonP, Le BouguénecC (2002) Identification of an Aggregative Adhesion Fimbria (AAF) Type III-Encoding Operon in Enteroaggregative Escherichia coli as a Sensitive Probe for Detecting the AAF-Encoding Operon Family. Infection and Immunity 70: 4302–4311.
25. ZavialovAV, BerglundJ, PudneyAF, FooksLJ, IbrahimTM, et al. (2003) Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113: 587–596.
26. AndersonKL, BillingtonJ, PettigrewD, CotaE, SimpsonP, et al. (2004b) An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol Cell 15: 647–657.
27. RoySP, RahmanMM, YuXD, TuittilaM, KnightSD, et al. (2012) Crystal structure of enterotoxigenic Escherichia coli colonization factor CS6 reveals a novel type of functional assembly. Mol Microbiol 86: 1100–1115.
28. BaoR, NairMKM, TangW-k, EsserL, SadhukhanA, et al. (2013) Structural basis for the specific recognition of dual receptors by the homopolymeric pH 6 antigen (Psa) fimbriae of Yersinia pestis. Proceedings of the National Academy of Sciences 110: 1065–1070.
29. RemautH, RoseRJ, HannanTJ, HultgrenSJ, RadfordSE, et al. (2006) Donor-Strand Exchange in Chaperone-Assisted Pilus Assembly Proceeds through a Concerted β Strand Displacement Mechanism. Molecular Cell 22: 831–842.
30. SauerFG, PinknerJS, WaksmanG, HultgrenSJ (2002) Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111: 543–551.
31. BarnhartMM, PinknerJS, SotoGE, SauerFG, LangermannS, et al. (2000) PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci U S A 97: 7709–7714.
32. ZavialovAV, TischenkoVM, FooksLJ, BrandsdalBO, AqvistJ, et al. (2005) Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem J 389: 685–694.
33. PiatekR, BruzdziakP, WojciechowskiM, Zalewska-PiatekB, KurJ (2010) The noncanonical disulfide bond as the important stabilizing element of the immunoglobulin fold of the Dr fimbrial DraE subunit. Biochemistry 49: 1460–1468.
34. CrespoMD, PuorgerC, SchärerMA, EidamO, GrütterMG, et al. (2012) Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. Nat Chem Biol 8: 707–713.
35. CotaE, JonesC, SimpsonP, AltroffH, AndersonKL, et al. (2006) The solution structure of the invasive tip complex from Afa/Dr fibrils. Mol Microbiol 62: 356–366.
36. HolmL, RosenstromP (2010) Dali server: conservation mapping in 3D. Nucleic Acids Research 38: W545–549.
37. SauerFG, RemautH, HultgrenSJ, WaksmanG (2004) Fiber assembly by the chaperone–usher pathway. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1694: 259–267.
38. BerjanskiiMV, WishartDS (2008) Application of the random coil index to studying protein flexibility. J Biomol NMR 40: 31–48.
39. LawrenceMC, ColmanPM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234: 946–950.
40. GarciaM-I, GounonP, CourcouxP, LabigneA, Le BouguénecC (1996) The afimbrial adhesive sheath encoded by the afa-3 gene cluster of pathogenic Escherichia coli is composed of two adhesins. Molecular Microbiology 19: 683–693.
41. GarciaM-I, JouveM, NataroJP, GounonP, Le BouguénecC (2000) Characterization of the AfaD-like family of invasins encoded by pathogenic Escherichia coli associated with intestinal and extra-intestinal infections. FEBS Letters 479: 111–117.
42. SalihO, RemautH, WaksmanG, OrlovaEV (2008) Structural Analysis of the Saf Pilus by Electron Microscopy and Image Processing. Journal of Molecular Biology 379: 174–187.
43. KorotkovaN, YangY, Le TrongI, CotaE, DemelerB, et al. (2008) Binding of Dr adhesins of Escherichia coli to carcinoembryonic antigen triggers receptor dissociation. Molecular Microbiology 67: 420–434.
44. DasM, Hart-Van TassellA, UrvilPT, LeaS, PettigrewD, et al. (2005) Hydrophilic Domain II of Escherichia coli Dr Fimbriae Facilitates Cell Invasion. Infection and Immunity 73: 6119–6126.
45. BollEJ, StruveC, SanderA, DemmaZ, NataroJP, et al. (2012) The fimbriae of enteroaggregative Escherichia coli induce epithelial inflammation in vitro and in a human intestinal xenograft model. J Infect Dis 206: 714–722.
46. StraumanMC, HarperJM, HarringtonSM, BollEJ, NataroJP (2010) Enteroaggregative Escherichia coli disrupts epithelial cell tight junctions. Infect Immun 78: 4958–4964.
47. de Oliveira-GarciaD, Dall'AgnolM, RosalesM, AzzuzAC, AlcantaraN, et al. (2003) Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell Microbiol 5: 625–636.
48. ForestKT, DunhamSA, KoomeyM, TainerJA (1999) Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Molecular Microbiology 31: 743–752.
49. NeedlemanDJ, Ojeda-LopezMA, RavivU, MillerHP, WilsonL, et al. (2004) Higher-order assembly of microtubules by counterions: From hexagonal bundles to living necklaces. Proceedings of the National Academy of Sciences of the United States of America 101: 16099–16103.
50. BinghamRJ, Rudiño-PiñeraE, MeenanNAG, Schwarz-LinekU, TurkenburgJP, et al. (2008) Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains. Proceedings of the National Academy of Sciences 105: 12254–12258.
51. KonarM, SachinO, PriyaA, GhoshS (2012) Identification of key proteins of cultured human intestinal cells involved in interaction with enteroaggregative Escherichia coli. FEMS Immunology & Medical Microbiology 66: 177–190.
52. IzquierdoM, Navarro-GarciaF, Nava-AcostaR, NataroJP, Ruiz-PerezF, et al. (2014) Identification of cell surface-exposed proteins involved in the fimbria-mediated adherence of enteroaggregative Escherichia coli to intestinal cells. Infect Immun 82: 1719–1724.
53. NuccitelliA, CozziR, GourlayLJ, DonnarummaD, NecchiF, et al. (2011) Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections. Proceedings of the National Academy of Sciences 108: 10278–10283.
54. ZhangC, ZhangW (2010) Escherichia coli K88ac Fimbriae Expressing Heat-Labile and Heat-Stable (STa) Toxin Epitopes Elicit Antibodies That Neutralize Cholera Toxin and STa Toxin and Inhibit Adherence of K88ac Fimbrial E. coli. Clinical and Vaccine Immunology 17: 1859–1867.
55. HuescaM, SunQ, PeraltaR, ShivjiGM, SauderDN, et al. (2000) Synthetic Peptide Immunogens Elicit Polyclonal and Monoclonal Antibodies Specific for Linear Epitopes in the D Motifs ofStaphylococcus aureus Fibronectin-Binding Protein, Which Are Composed of Amino Acids That Are Essential for Fibronectin Binding. Infection and Immunity 68: 1156–1163.
56. DormitzerPR, GrandiG, RappuoliR (2012) Structural vaccinology starts to deliver. Nat Rev Micro 10: 807–813.
57. PakharukovaN, TuittilaM, ZavialovA (2013) Crystallization and sulfur SAD phasing of AggA, the major subunit of aggregative adherence fimbriae type I from the Escherichia coli strain that caused an outbreak of haemolytic-uraemic syndrome in Germany. Acta Crystallogr Sect F Struct Biol Cryst Commun 69: 1389–1392.
58. YangY, GarnettJA, MatthewsS (2011) Crystallization and initial crystallographic analysis of AafA: the major adhesive subunit of the enteroaggregative Escherichia coli AAF/II pilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 67: 454–456.
59. KabschW (2010) Xds. Acta Crystallogr D Biol Crystallogr 66: 125–132.
60. JedrzejczakR, DauterZ, DauterM, PiatekR, ZalewskaB, et al. (2006) Structure of DraD invasin from uropathogenic Escherichia coli: a dimer with swapped [beta]-tails. Acta Crystallographica Section D 62: 157–164.
61. AdamsPD, Grosse-KunstleveRW, HungLW, IoergerTR, McCoyAJ, et al. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58: 1948–1954.
62. WinnMD, IsupovMN, MurshudovGN (2001) Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallographica Section D-Biological Crystallography 57: 122–133.
63. MarchantJ, SawmynadenK, SaourosS, SimpsonP, MatthewsS (2008) Complete resonance assignment of the first and second apple domains of MIC4 from Toxoplasma gondii, using a new NMRView-based assignment aid. Biomolecular Nmr Assignments 2: 119–121.
64. RiepingW, HabeckM, BardiauxB, BernardA, MalliavinTE, et al. (2007) ARIA2: Automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23: 381–382.
65. ShenY, DelaglioF, CornilescuG, BaxA (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of Biomolecular Nmr 44: 213–223.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7
- The Ins and Outs of Rust Haustoria
- Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells
- RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms