Molecular Insights Into the Evolutionary Pathway of O1 Atypical El Tor Variants
In this report, we suggest a genetic mechanism of how the V. cholerae atypical El Tor variants were generated from classical and prototype El Tor biotype strains. An intermediary strain, containing the CTX-1 and CTX-2 prophages, was identified among the clinical isolates that were collected in 1991, when the atypical strains emerged. This strain can be converted into various Wave 2 atypical El Tor strains by eliminating prototype components, CTX-1 and RS1. Further, new types of the CTX phage genome can be generated from the intermediary strain by inter-chromosomal recombination between CTX phages and recombination between the CTX phage and RS1. These new CTX phages can be transduced into other El Tor strains, transforming them into Wave 3 atypical strains. This is a demonstrated instance of how a single-segment-genome CTX phage re-organizes its genome through recombination between different types of phage, leading to generation of new phage variants and atypical El Tor strains.
Vyšlo v časopise:
Molecular Insights Into the Evolutionary Pathway of O1 Atypical El Tor Variants. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004384
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004384
Souhrn
In this report, we suggest a genetic mechanism of how the V. cholerae atypical El Tor variants were generated from classical and prototype El Tor biotype strains. An intermediary strain, containing the CTX-1 and CTX-2 prophages, was identified among the clinical isolates that were collected in 1991, when the atypical strains emerged. This strain can be converted into various Wave 2 atypical El Tor strains by eliminating prototype components, CTX-1 and RS1. Further, new types of the CTX phage genome can be generated from the intermediary strain by inter-chromosomal recombination between CTX phages and recombination between the CTX phage and RS1. These new CTX phages can be transduced into other El Tor strains, transforming them into Wave 3 atypical strains. This is a demonstrated instance of how a single-segment-genome CTX phage re-organizes its genome through recombination between different types of phage, leading to generation of new phage variants and atypical El Tor strains.
Zdroje
1. KaperJB, MorrisJGJr, LevineMM (1995) Cholera. Clin Microbiol Rev 8: 48–86.
2. SackDA, SackRB, NairGB, SiddiqueAK (2004) Cholera. Lancet 363: 223–233.
3. ChoiSY, LeeJH, KimEJ, LeeHR, JeonYS, et al. (2010) Classical RS1 and environmental RS1 elements in Vibrio cholerae O1 El Tor strains harbouring a tandem repeat of CTX prophage: revisiting Mozambique in 2005. J Med Microbiol 59: 302–308.
4. BoydEF, HeilpernAJ, WaldorMK (2000) Molecular analyses of a putative CTXΦ precursor and evidence for independent acquisition of distinct CTXΦs by toxigenic Vibrio cholerae. J Bacteriol 182: 5530–5538.
5. NairGB, QadriF, HolmgrenJ, SvennerholmAM, SafaA, et al. (2006) Cholera due to altered El Tor strains of Vibrio cholerae O1 in Bangladesh. J Clin Microbiol 44: 4211–4213.
6. SafaA, NairGB, KongRY (2010) Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 18: 46–54.
7. MoritaM, OhnishiM, ArakawaE, YamamotoS, NairGB, et al. (2010) Emergence and genetic diversity of El Tor Vibrio cholerae O1 that possess classical biotype ctxB among travel-associated cases of cholera in Japan. J Med Microbiol 59: 708–712.
8. LeeJH, ChoiSY, JeonYS, LeeHR, KimEJ, et al. (2009) Classification of hybrid and altered Vibrio cholerae strains by CTX prophage and RS1 element structure. J Microbiol 47: 783–788.
9. AnsaruzzamanM, BhuiyanNA, NairBG, SackDA, LucasM, et al. (2004) Cholera in Mozambique, variant of Vibrio cholerae. Emerg Infect Dis 10: 2057–2059.
10. MutrejaA, KimDW, ThomsonNR, ConnorTR, LeeJH, et al. (2011) Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477: 462–465.
11. NguyenBM, LeeJH, CuongNT, ChoiSY, HienNT, et al. (2009) Cholera outbreaks caused by an altered Vibrio cholerae O1 El Tor biotype strain producing classical cholera toxin B in Vietnam in 2007 to 2008. J Clin Microbiol 47: 1568–1571.
12. ChoiSY, LeeJH, JeonYS, LeeHR, KimEJ, et al. (2010) Multilocus variable-number tandem repeat analysis of Vibrio cholerae O1 El Tor strains harbouring classical toxin B. J Med Microbiol 59: 763–769.
13. NahaA, PazhaniGP, GangulyM, GhoshS, RamamurthyT, et al. (2012) Development and evaluation of a PCR assay for tracking the emergence and dissemination of Haitian variant ctxB in Vibrio cholerae O1 strains isolated from Kolkata, India. J Clin Microbiol 50: 1733–1736.
14. ChinCS, SorensonJ, HarrisJB, RobinsWP, CharlesRC, et al. (2011) The origin of the Haitian cholera outbreak strain. N Engl J Med 364: 33–42.
15. ShakyaG, KimDW, ClemensJD, MallaS, UpadhyayaBP, et al. (2012) Phenotypic and genetic characterization of Vibrio cholerae O1 clinical isolates collected through national antimicrobial resistance surveillance network in Nepal. World J Microbiol Biotechnol 28: 2671–2678.
16. PatraT, ChatterjeeS, RaychoudhuriA, MukhopadhyayAK, RamamurthyT, et al. (2011) Emergence and progression of Vibrio cholerae O1 El Tor variants and progenitor strains of Mozambique variants in Kolkata, India. Int J Med Microbiol 301: 310–317.
17. UddenSM, ZahidMS, BiswasK, AhmadQS, CraviotoA, et al. (2008) Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. Proc Natl Acad Sci U S A 105: 11951–11956.
18. KimEJ, LeeD, MoonSH, LeeCH, KimDW (2014) CTX prophages in Vibrio cholerae O1 strains. J Microbiol Biotechnol 24: 725–731.
19. SurD, LopezAL, KanungoS, PaisleyA, MannaB, et al. (2009) Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: an interim analysis of a cluster-randomised, double-blind, placebo-controlled trial. Lancet 374: 1694–1702.
20. LeeJH, HanKH, ChoiSY, LucasME, MondlaneC, et al. (2006) Multilocus sequence typing (MLST) analysis of Vibrio cholerae O1 El Tor isolates from Mozambique that harbour the classical CTX prophage. J Med Microbiol 55: 165–170.
21. WaldorMK, MekalanosJJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910–1914.
22. FaruqueSM, TamVC, ChowdhuryN, DiraphatP, DziejmanM, et al. (2007) Genomic analysis of the Mozambique strain of Vibrio cholerae O1 reveals the origin of El Tor strains carrying classical CTX prophage. Proc Natl Acad Sci U S A 104: 5151–5156.
23. GrimCJ, HasanNA, TavianiE, HaleyB, ChunJ, et al. (2010) Genome sequence of hybrid Vibrio cholerae O1 MJ-1236, B-33, and CIRS101 and comparative genomics with V. cholerae. J Bacteriol 192: 3524–3533.
24. DavisBM, WaldorMK (2000) CTXΦ contains a hybrid genome derived from tandemly integrated elements. Proc Natl Acad Sci U S A 97: 8572–8577.
25. ChunJ, GrimCJ, HasanNA, LeeJH, ChoiSY, et al. (2009) Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 106: 15442–15447.
26. ChoYJ, YiH, LeeJH, KimDW, ChunJ (2010) Genomic evolution of Vibrio cholerae. Curr Opin Microbiol 13: 646–651.
27. HalderK, DasB, NairGB, BhadraRK (2010) Molecular evidence favouring step-wise evolution of Mozambique Vibrio cholerae O1 El Tor hybrid strain. Microbiology 156: 99–107.
28. HendriksenRS, PriceLB, SchuppJM, GilleceJD, KaasRS, et al. (2011) Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. mBio 2: e00157–11.
29. SiddiqueAK, NairGB, AlamM, SackDA, HuqA, et al. (2010) El Tor cholera with severe disease: a new threat to Asia and beyond. Epidemiol Infect 138: 347–352.
30. DonnenbergMS, KaperJB (1991) Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59: 4310–4317.
31. DasB, BischerourJ, BarreFX (2011) VGJΦ integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci U S A 108: 2516–2521.
32. KimDW, LenzenG, PageAL, LegrainP, SansonettiPJ, et al. (2005) The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc Natl Acad Sci U S A 102: 14046–14051.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7
- The Ins and Outs of Rust Haustoria
- Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells
- RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms