The Effects of Vaccination and Immunity on Bacterial Infection Dynamics
The bacterium Salmonella enterica causes gastroenteritis and the severe systemic diseases typhoid, paratyphoid fever and non-typhoidal septicaemia (NTS). Treatment of systemic disease with antibiotics is becoming increasingly difficult due to the acquisition of resistance. Licensed vaccines are available for the prevention of typhoid, but not paratyphoid fever or NTS. Vaccines can be either living (attenuated strains) or non-living (e.g. inactivated whole cells or surface polysaccharides) and these different classes potentially activate different components of the host immune system. Improvements in vaccine design require a better understanding of how different vaccine types differ in their ability to control a subsequent infection. We have improved a previously developed experimental system and mathematical model to investigate how these different vaccine types act. We show that the inactivated vaccine can only control bacterial numbers by a transient increase in bactericidal activity whereas the living vaccine is superior as it can induce an immune response that rapidly kills, then restrains the growth and spread of infecting bacteria.
Vyšlo v časopise:
The Effects of Vaccination and Immunity on Bacterial Infection Dynamics. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004359
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004359
Souhrn
The bacterium Salmonella enterica causes gastroenteritis and the severe systemic diseases typhoid, paratyphoid fever and non-typhoidal septicaemia (NTS). Treatment of systemic disease with antibiotics is becoming increasingly difficult due to the acquisition of resistance. Licensed vaccines are available for the prevention of typhoid, but not paratyphoid fever or NTS. Vaccines can be either living (attenuated strains) or non-living (e.g. inactivated whole cells or surface polysaccharides) and these different classes potentially activate different components of the host immune system. Improvements in vaccine design require a better understanding of how different vaccine types differ in their ability to control a subsequent infection. We have improved a previously developed experimental system and mathematical model to investigate how these different vaccine types act. We show that the inactivated vaccine can only control bacterial numbers by a transient increase in bactericidal activity whereas the living vaccine is superior as it can induce an immune response that rapidly kills, then restrains the growth and spread of infecting bacteria.
Zdroje
1. CrumpJA, MintzED (2010) Global trends in typhoid and paratyphoid fever. Clin Infect Dis 50: 241–246.
2. GordonMA (2011) Invasive non-typhoidal Salmonella disease - epidemiology, pathogenesis and diagnosis. Curr Opin Infect Dis 24: 484–489.
3. LaytonAN, GalyovEE (2007) Salmonella-induced enteritis: molecular pathogenesis and therapeutic implications. Expert Rev Mol Med 9: 1–17.
4. MulhollandEK, AdegbolaRA (2005) Bacterial infections - a major cause of death among children in Africa. New Engl J Med 352: 75–77.
5. HohmannEL (2001) Nontyphoidal salmonellosis. Clin Infect Dis 32: 263–269.
6. ParryCM, ThrelfallEJ (2008) Antimircobial resistance in typhoidal and nontyphoidal salmonellae. Curr Opin Infect Dis 21: 531–538.
7. McGregorAC, WaddingtonCS, PollardAJ (2013) Prospects for prevention of Salmonella infection in children through vaccination. Curr Opin Infect Dis 26: 254–262.
8. MastroeniP, Villareal-RamosB, HormaecheCE (1993) Adoptive transfer of immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c mice requires both immune serum and T cells. Infect Immun 61: 3981–3984.
9. MastroeniP, GrantA, RestifO, MaskellD (2009) A dynamic view of the spread and intracellular distribution of Salmonella enterica. Nat Rev Microbiol 7: 73–80.
10. MastroeniP, MorganFJE, McKinleyTJ, ShawcroftE, ClareS, et al. (2011) Enhanced virulence of Salmonella enterica serovar Typhimurium after passage through mice. Infect Immun 79: 636–643.
11. GuzmanCA, BorsutskyS, Griot-WenkM, MetcalfeIC, PearmanJ, et al. (2006) Vaccines against typhoid fever. Vaccine 24: 3804–3811.
12. SzteinMB (2007) Cell-mediated immunity and antibody responses elicited by attenuated Salmonella enterica erovar Typhi strains used as live oral vaccines in humans. Clin Infect Dis 45: S15–S19.
13. SzuSC (2013) Development of Vi conjugate - a new generation of typhoid vaccine. Expert Review of Vaccines 12: 1273–1286.
14. van DammeP, KafejaF, AnemonaA, BasileV, HilbertAK, et al. (2011) Safety, Immunogenicity and Dose Ranging of a New Vi-CRM197 Conjugate Vaccine against Typhoid Fever: Randomized Clinical Testing in Healthy Adults. PLoS One 6: e25398.
15. EisensteinTK, KillarLM, SultzerBM (1984) Immunity to infection with Salmonella typhimurium: mouse-strain differences in vaccine- and serum-mediated protection. J Infect Dis 150: 425–435.
16. HarrisonJA, Villareal-RamosB, MastroeniP, De HormaecheRD, HormaecheCE (1997) Correlates of protection induced by live Aro- Salmonella typhimurium vaccines in the murine typhoid model. Immunology 90: 618–625.
17. LevineMM, FerreccioC, BlackRE, TacketCO, GermanierR (1989) Progress in vaccines against typhoid fever. Rev Infect Dis 11 Suppl 3.
18. MastroeniP, ChabalgoityJA, DunstanSJ, MaskellDJ, DouganG (2001) Salmonella: immune responses and vaccines. The Vet J 161: 132–164.
19. ThatteJ, RathS, BalV (1993) Immunization with live versus killed Salmonella typhimurium leads to the generation of an IFN-gamma-dominant versus an IL-4-dominant immune response. International Immunology 5: 1431–1436.
20. BenjaminWHJr, HallP, RobertsSJ, BrilesDE (1990) The primary effect of the Ity locus is on the rate of growth of Salmonella typhimurium that are relatively protected from killing. J Immunol 144: 3143–3151.
21. HelaineS, HoldenDW (2013) Heterogeneity of intracellular replication of bacterial pathogens. Curr Opp Microbiol 16: 184–191.
22. HormaecheCE (1980) The in vivo division and death rates of Salmonella typhimurium in the spleens of naturally resistant and susceptible mice measured by the superinfecting phage technique of Meynell. Immunology 41: 973–979.
23. SmithH (2000) Questions about the behavious of bacterial pathogens in vivo. Phil Trans R Soc B 255: 551–564.
24. CowardC, van DiemenPM, ConlanAJ, GogJR, StevensMP, et al. (2008) Competing isogenic Campylobacter strains exhibit variable population structures in vivo. Appl Environ Microbiol 74: 3857–3867.
25. GrantAJ, RestifO, McKinleyTJ, SheppardM, MaskellDJ, et al. (2008) Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol 6: e74.
26. BlandenRV, MackanessGB, CollinsFM (1966) Mechanisms of acquired resistance in mouse typhoid. J Exp Med 124: 585–600.
27. CollinsFM (1969) Effect of specific immune mouse serum on the growth of Salmonella enteritidis in mice preimmunized with living or ethyl alcohol-killed vaccines. J Bacteriol 97: 676–683.
28. CollinsFM, MackanessGB, BlandenRV (1966) Infection-immunity in experimental salmonellosis. J Exp Med 124: 601–619.
29. CollinsFM, MilneM (1966) Heat-labile antigens of Salmonella enteritidis. J Bacteriol 92: 549–557.
30. MackanessGB, BlandenRV, CollinsFM (1966) Host-parasite relations in mouse typhoid. J Exp Med 124: 573–583.
31. HelaineS, ThompsonJA, WatsonKG, LiuM, BoyleC, et al. (2010) Dynamics of intracellular bacterial replication at the single cell level. P Natl Acad Sci USA 107: 3746–2751.
32. RestifO, GohYS, PalayretM, GrantAJ, McKinleyTJ, et al. (2012) Quantification of the effects of antibodies on the extra- and intracellular dyanamics of Salmonella enterica. J R Soc Interface 10: 20120866.
33. MastroeniP, Villareal-RamosB, HormaecheCE (1992) Role of T cells, TNFα and IFNγ in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro− salmonella vaccines. Microb Pathogenesis 13: 477–491.
34. KaiserP, SlackE, GrantAJ, HardtW-D, RegoesRR (2013) Lymph node colonization dynamics after oral Salmonella Typhimurium infection in mice. PLoS Pathog 9: e1002532.
35. MeynellGG (1957) The applicability of the hypothesis of independent action to fatal infections in mice given Salmonella typhimurium by mouth. J Gen Microbiol 16: 396–404.
36. MeynellGG, StockerBAD (1957) Some hypotheses on the aetiology of fatal infections in partially resistant hosts and their application to mice challenged with Salmonella paratyphi-B or Salmonella typhimurium by intraperitoneal injection. J Gen Microbiol 16: 38–58.
37. MoxonER, MurphyPA (1978) Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism. P Natl Acad Sci USA 75: 1534–1536.
38. MarcusS, EsplinDW, DonaldsonDM (1954) Lack of bactericidal effect of mouse serum on a number of common microorganisms. Science 119: 877.
39. SigginsMK, CunninghamAF, MarshallJL, ChamberlainJL, HendersonIR, et al. (2011) Absent bactericidal activity of mouse serum against invasive African nontyphoidal Salmonella results from impaired complement function but not lack of antibody. J Immunol 186: 2365–2371.
40. HelaineS, ChevertonAM, WatsonKG, FaureLM, MatthewsSA, et al. (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343: 204–208.
41. UppingtonH, MénagerN, BorossP, WoodJ, SheppardM, et al. (2006) Effect of immune serum and role of individual Fcγ receptors on the intracellular distribution and survival of Salmonella ennterica serovar Typhimurium in murine macrophages. Immunology 119: 147–158.
42. RosenbergerCM, FinlayBB (2002) Macrophages inhibit Salmonella Typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem 277: 18753–18762.
43. MastroeniP, Vazquez-TorresA, FangFC, XuY, KhanS, et al. (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192: 237–247.
44. Vazquez-TorresA, Jones-CarsonJ, MastroeniP, IschiropouloaH, FangFC (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192: 227–236.
45. GrantAJ, SheppardM, DeardonR, BrownSP, FosterG, et al. (2008) Caspase-3-dependent phagocyte death during systemic Salmonella enterica serovar Typhimurium infection of mice. Immunology 125: 28–37.
46. SheppardM, WebbC, HeathF, MallowsV, EmilianusR, et al. (2003) Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol 5: 593–600.
47. MastroeniP, GrantAJ (2011) Spread of Salmonella enterica in the body during systemic infection: unravelling host and pathogen determinants. Expert Rev Mol Med 13: e12.
48. MastroeniP, GrantAJ (2013) Dynamics of spread of Salmonella enterica in the systemic compartment. Microbes Infect 15: 849–857.
49. HauteforteI, ProençaMJ, HintonJC (2003) Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl Environ Microbiol 69: 7480–7491.
50. HoisethSK, StockerBA (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291: 238–239.
51. MénagerN, FosterG, UgrinovicS, UppingtonH, VerbeekS, et al. (2007) Fcγ receptors are crucial for the expression of acquired resistance to virulent Salmonella enterica serovar Typhimurium in vivo but are not required for the induction of humoral or T-cell-mediated immunity. Immunology 120: 424–432.
52. CobboldSP, JayasuriyaA, NashA, DPT, WaldmannH (1984) Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312: 548–551.
53. CobboldSP, MartinG, QuinS, WaldmannH (1986) Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature 323: 164–166.
54. R Core Team (2013) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
55. Dorai-RajS (2006) Powell's UObyQA algorithm.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7
- The Ins and Outs of Rust Haustoria
- Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells
- RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms