#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Cbx8-Containing Polycomb Complex Facilitates the Transition to Gene Activation during ES Cell Differentiation


Cell fate transitions have long been known to be accompanied by alterations in chromatin structure. But only during the last few years has it become clear that chromatin modifications form the molecular basis of an epigenetic memory that defines cell identity. The Polycomb Group Proteins (PcGs) form two major protein complexes known as polycomb repressive complexes 1 and 2 (PRC1 and PRC2). Their function is essential for the maintenance of transcriptional repression during embryogenesis through the methylation of the lysine 27 on histone H3 and the subsequent ubiquitination of histone H2A. The chromobox homolog 8, Cbx8, which is part of the PRC1 complex, is therefore generally defined as a repressor of gene transcription. The genome wide profiling of Cbx8 during the early steps of mouse embryonic stem (mES) cells differentiation provided us with surprising results involving Cbx8 in gene activation. Our results point out that Cbx8 is part of a PRC1 complex involved in the transition from a Polycomb repressed state to an active state.


Vyšlo v časopise: A Cbx8-Containing Polycomb Complex Facilitates the Transition to Gene Activation during ES Cell Differentiation. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004851
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004851

Souhrn

Cell fate transitions have long been known to be accompanied by alterations in chromatin structure. But only during the last few years has it become clear that chromatin modifications form the molecular basis of an epigenetic memory that defines cell identity. The Polycomb Group Proteins (PcGs) form two major protein complexes known as polycomb repressive complexes 1 and 2 (PRC1 and PRC2). Their function is essential for the maintenance of transcriptional repression during embryogenesis through the methylation of the lysine 27 on histone H3 and the subsequent ubiquitination of histone H2A. The chromobox homolog 8, Cbx8, which is part of the PRC1 complex, is therefore generally defined as a repressor of gene transcription. The genome wide profiling of Cbx8 during the early steps of mouse embryonic stem (mES) cells differentiation provided us with surprising results involving Cbx8 in gene activation. Our results point out that Cbx8 is part of a PRC1 complex involved in the transition from a Polycomb repressed state to an active state.


Zdroje

1. Di CroceL, HelinK (2013) Transcriptional regulation by Polycomb group proteins. Nature Structural & Molecular Biology 20: 1147–1155 doi:10.1038/nsmb.2669

2. SchuettengruberB, ChourroutD, VervoortM, LeblancB, CavalliG (2007) Genome Regulation by Polycomb and Trithorax Proteins. Cell 128: 735–745 doi:10.1016/j.cell.2007.02.009

3. SparmannA, van LohuizenM (2006) Polycomb silencers control cell fate, development and cancer. Nature Reviews Cancer 6: 846–856 doi:10.1038/nrc1991

4. EndohM, EndoTA, EndohT, IsonoK-I, SharifJ, et al. (2012) Histone H2A Mono-Ubiquitination Is a Crucial Step to Mediate PRC1-Dependent Repression of Developmental Genes to Maintain ES Cell Identity. PLoS Genet 8: e1002774 doi:10.1371/journal.pgen.1002774.s012

5. SchoeftnerS, SenguptaAK, KubicekS, MechtlerK, SpahnL, et al. (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. The EMBO Journal 25: 3110–3122 doi:10.1038/sj.emboj.7601187

6. TerranovaR, YokobayashiS, StadlerMB, OtteAP, van LohuizenM, et al. (2008) Polycomb Group Proteins Ezh2 and Rnf2 Direct Genomic Contraction and Imprinted Repression in Early Mouse Embryos. Developmental Cell 15: 668–679 doi:10.1016/j.devcel.2008.08.015

7. TavaresL, DimitrovaE, OxleyD, WebsterJ, PootR, et al. (2012) RYBP-PRC1 Complexes Mediate H2A Ubiquitylation at Polycomb Target Sites Independently of PRC2 and H3K27me3. Cell 148: 664–678 doi:10.1016/j.cell.2011.12.029

8. DietrichN, LerdrupM, LandtE, Agrawal-SinghS, BakM, et al. (2012) REST–Mediated Recruitment of Polycomb Repressor Complexes in Mammalian Cells. PLoS Genet 8: e1002494 doi:10.1371/journal.pgen.1002494.s017

9. SenthilkumarR, MishraRK (2009) Novel motifs distinguish multiple homologues of Polycomb in vertebrates: expansion and diversification of the epigenetic toolkit. BMC Genomics 10: 549 doi:10.1186/1471-2164-10-549

10. LeeTI, JennerRG, BoyerLA, GuentherMG, LevineSS, et al. (2006) Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells. Cell 125: 301–313 doi:10.1016/j.cell.2006.02.043

11. van der StoopP, BoutsmaEA, HulsmanD, NobackS, HeimerikxM, et al. (2008) Ubiquitin E3 Ligase Ring1b/Rnf2 of Polycomb Repressive Complex 1 Contributes to Stable Maintenance of Mouse Embryonic Stem Cells. PLoS ONE 3: e2235 doi:10.1371/journal.pone.0002235.s006

12. BoyerLA, PlathK, ZeitlingerJ, BrambrinkT, MedeirosLA, et al. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: 349–353 doi:10.1038/nature04733

13. BrackenAP, DietrichN, PasiniD, HansenKH, HelinK (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes & Development 20: 1123–1136 doi:10.1101/gad.381706

14. LaursenKB, MonganNP, ZhuangY, NgMM, BenoitYD, et al. (2013) Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene. Nucleic Acids Research 41: 6430–6443 doi:10.1093/nar/gkt367

15. GudasLJ (2013) Retinoids induce stem cell differentiation via epigenetic changes. Seminars in Cell and Developmental Biology 24: 701–705 doi:10.1016/j.semcdb.2013.08.002

16. O'LoghlenA, Muñoz-CabelloAM, Gaspar-MaiaA, WuH-A, BanitoA, et al. (2012) MicroRNA Regulation of Cbx7 Mediates a Switch of Polycomb Orthologs during ESC Differentiation. Cell Stem Cell 10: 33–46 doi:10.1016/j.stem.2011.12.004

17. MoreyL, PascualG, CozzutoL, RomaG, WutzA, et al. (2012) Nonoverlapping Functions of the Polycomb Group Cbx Family of Proteins in Embryonic Stem Cells. Cell Stem Cell 10: 47–62 doi:10.1016/j.stem.2011.12.006

18. KlaukeK, RadulovićV, BroekhuisM, WeersingE, ZwartE, et al. (2013) Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nature Cell Biology 15: 353–362 doi:10.1038/ncb2701

19. PasiniD, BrackenAP, HansenJB, CapilloM, HelinK (2007) The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiation. Molecular and Cellular Biology 27: 3769–3779 doi:10.1128/MCB.01432-06

20. MikkelsenTS, KuM, JaffeDB, IssacB, LiebermanE, et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553–560 doi:10.1038/nature06008

21. CheungM, BriscoeJ (2003) Neural crest development is regulated by the transcription factor Sox9. Development 130: 5681–5693 doi:10.1242/dev.00808

22. PrakashN, PuellesE, FreudeK, TrumbachD, OmodeiD, et al. (2009) Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain. Development 136: 2545–2555 doi:10.1242/dev.031781

23. WangH, WangL, Erdjument-BromageH, VidalM, TempstP, et al. (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431: 873–878 doi:10.1038/nature02985

24. CreyghtonMP, ChengAW, WelsteadGG, KooistraT, CareyBW, et al. (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences 107: 21931–21936 doi:10.1073/pnas.1016071107

25. TanJ, JonesM, KosekiH, NakayamaM, MunteanAG, et al. (2011) CBX8, a Polycomb Group Protein, Is Essential for MLL-AF9-Induced Leukemogenesis. Cancer Cell 20: 563–575 doi:10.1016/j.ccr.2011.09.008

26. EskelandR, LeebM, GrimesGR, KressC, BoyleS, et al. (2010) Ring1B Compacts Chromatin Structure and Represses Gene Expression Independent of Histone Ubiquitination. Molecular Cell 38: 452–464 doi:10.1016/j.molcel.2010.02.032

27. VidalM (2009) Role of polycomb proteins Ring1A and Ring1B in the epigenetic regulation of gene expression. Int J Dev Biol 53: 355–370 doi:10.1387/ijdb.082690mv

28. GaoZ, ZhangJ, BonasioR, StrinoF, SawaiA, et al. (2012) PCGF Homologs, CBX Proteins, and RYBP Define Functionally Distinct PRC1 Family Complexes. Molecular Cell 45: 344–356 doi:10.1016/j.molcel.2012.01.002

29. MoreyL, AloiaL, CozzutoL, BenitahSA, Di CroceL (2013) RYBP and Cbx7 Define Specific Biological Functions of Polycomb Complexes in Mouse Embryonic Stem Cells. CellReports 3: 60–69 doi:10.1016/j.celrep.2012.11.026

30. BernsteinE, DuncanEM, MasuiO, GilJ, HeardE, et al. (2006) Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Molecular and Cellular Biology 26: 2560–2569 doi:10.1128/MCB.26.7.2560-2569.2006

31. BibelM, RichterJ, LacroixE, BardeY-A (2007) Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nature Protocols 2: 1034–1043 doi:10.1038/nprot.2007.147

32. Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, et al. (2014) Gene Silencing Triggers Polycomb Repressive Complex 2 Recruitment to CpG Islands Genome Wide. Molecular Cell: 1–14. doi:10.1016/j.molcel.2014.06.005.

33. MousaviK, ZareH, WangAH, SartorelliV (2012) Polycomb Protein Ezh1 Promotes RNA Polymerase II Elongation. Molecular Cell 45: 255–262 doi:10.1016/j.molcel.2011.11.019

34. BrookesE, de SantiagoI, HebenstreitD, MorrisKJ, CarrollT, et al. (2012) Polycomb Associates Genome-wide with a Specific RNA Polymerase II Variant, and Regulates Metabolic Genes in ESCs. Cell Stem Cell 10: 157–170 doi:10.1016/j.stem.2011.12.017

35. SchaafCA, MisulovinZ, GauseM, KoenigA, GoharaDW, et al. (2013) Cohesin and Polycomb Proteins Functionally Interact to Control Transcription at Silenced and Active Genes. PLoS Genet 9: e1003560 doi:10.1371/journal.pgen.1003560.s014

36. RichlyH, Rocha-ViegasL, RibeiroJD, DemajoS, GundemG, et al. (2010) Transcriptional activation of polycomb-repressed genes by ZRF1. Nature 468: 1124–1128 doi:10.1038/nature09574

37. AubertJ, DunstanH, ChambersI, SmithA (2002) Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nature Biotechnology 20: 1240–1245 doi:10.1038/nbt763

38. CreppeC, JanichP, CantarinoN, NogueraM, ValeroV, et al. (2012) MacroH2A1 Regulates the Balance between Self-Renewal and Differentiation Commitment in Embryonic and Adult Stem Cells. Molecular and Cellular Biology 32: 1442–1452 doi:10.1128/MCB.06323-11

39. CongR, DasS, DouetJ, WongJ, BuschbeckM, et al. (2013) macroH2A1 histone variant represses rDNA transcription. Nucleic Acids Research 42: 181–192 doi:10.1093/nar/gkt863

40. BuschbeckM, UribesalgoI, LedlA, GutierrezA, MinucciS, et al. (2007) PML4 induces differentiation by Myc destabilization. Oncogene 26: 3415–3422 doi:10.1038/sj.onc.1210128

41. UribesalgoI, BuschbeckM, GutiérrezA, TeichmannS, DemajoS, et al. (2011) E-box-independent regulation of transcription and differentiation by MYC. Nature Cell Biology 13: 1–9 doi:10.1038/ncb2355

42. BuschbeckM, UribesalgoI, WibowoI, RuéP, MartinD, et al. (2009) The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nature Structural & Molecular Biology 16: 1074–1079 doi:10.1038/nsmb.1665

43. MorganM, AndersS, LawrenceM, AboyounP, PagesH, et al. (2009) ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25: 2607–2608 doi:10.1093/bioinformatics/btp450

44. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25 doi:10.1186/gb-2009-10-3-r25

45. ZhangY, LiuT, MeyerCA, EeckhouteJ, JohnsonDS, et al. (2008) Model-based Analysis of ChIP-Seq (MACS). Genome Biol 9: R137 doi:10.1186/gb-2008-9-9-r137

46. ZhuLJ, GazinC, LawsonND, PagèsH, LinSM, et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 11: 237 doi:10.1186/1471-2105-11-237

47. ShenL, ShaoN, LiuX, NestlerE (2014) ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15: 1–14 doi:10.1186/1471-2164-15-284

48. SupekF, BošnjakM, ŠkuncaN, ŠmucT (2011) REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE 6: e21800 doi:10.1371/journal.pone.0021800.t001

49. ChenX, XuH, YuanP, FangF, HussM, et al. (2008) Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells. Cell 133: 1106–1117 doi:10.1016/j.cell.2008.04.043

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#