The Tau Tubulin Kinases TTBK1/2 Promote Accumulation of Pathological TDP-43
Aggregated proteins are a hallmark of many neurodegenerative diseases. In ALS and FTLD-TDP, these aggregates contain abnormal TDP-43 modified by phosphorylation. Protein phosphorylation normally controls protein activity, stability, or location, but in some neurodegenerative diseases the phosphorylated proteins accumulate in excess. Kinases are the enzymes responsible for protein phosphorylation. We have identified two TDP-43 kinases, TTBK1 and TTBK2, using a novel approach combining reverse genetics and biochemical screening to identify the kinases responsible for changes in TDP-43 phosphorylation. We show TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro, and control TDP-43 phosphorylation in cellular and simple animal models of ALS. This has uncovered a molecular mechanism by which pathological phosphorylated TDP-43 can occur in disease. To determine whether changes in TTBK1/2 protein are contributing to TDP-43 pathology, we examined diseased brain and spinal cord tissue from patients with ALS or FTLD-TDP. We observed changes in the abundance of TTBK1 and TTBK2 in disease-affected neurons, and the coexistence of TTBK1/2 with phosphorylated TDP-43 aggregates in both FTLD-TDP and ALS. Therefore, increased abundance or activity of TTBK1 or TTBK2 may contribute to the neurodegeneration observed in ALS and FTLD-TDP.
Vyšlo v časopise:
The Tau Tubulin Kinases TTBK1/2 Promote Accumulation of Pathological TDP-43. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004803
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004803
Souhrn
Aggregated proteins are a hallmark of many neurodegenerative diseases. In ALS and FTLD-TDP, these aggregates contain abnormal TDP-43 modified by phosphorylation. Protein phosphorylation normally controls protein activity, stability, or location, but in some neurodegenerative diseases the phosphorylated proteins accumulate in excess. Kinases are the enzymes responsible for protein phosphorylation. We have identified two TDP-43 kinases, TTBK1 and TTBK2, using a novel approach combining reverse genetics and biochemical screening to identify the kinases responsible for changes in TDP-43 phosphorylation. We show TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro, and control TDP-43 phosphorylation in cellular and simple animal models of ALS. This has uncovered a molecular mechanism by which pathological phosphorylated TDP-43 can occur in disease. To determine whether changes in TTBK1/2 protein are contributing to TDP-43 pathology, we examined diseased brain and spinal cord tissue from patients with ALS or FTLD-TDP. We observed changes in the abundance of TTBK1 and TTBK2 in disease-affected neurons, and the coexistence of TTBK1/2 with phosphorylated TDP-43 aggregates in both FTLD-TDP and ALS. Therefore, increased abundance or activity of TTBK1 or TTBK2 may contribute to the neurodegeneration observed in ALS and FTLD-TDP.
Zdroje
1. AraiT, HasegawaM, AkiyamaH, IkedaK, NonakaT, et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351: 602–611.
2. NeumannM, SampathuDM, KwongLK, TruaxAC, MicsenyiMC, et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130–133.
3. RutherfordNJ, ZhangYJ, BakerM, GassJM, FinchNA, et al. (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4: e1000193.
4. SreedharanJ, BlairIP, TripathiVB, HuX, VanceC, et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319: 1668–1672.
5. KabashiE, ValdmanisPN, DionP, SpiegelmanD, McConkeyBJ, et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40: 572–574.
6. Van DeerlinVM, LeverenzJB, BekrisLM, BirdTD, YuanW, et al. (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7: 409–416.
7. KuhnleinP, SperfeldAD, VanmassenhoveB, Van DeerlinV, LeeVM, et al. (2008) Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch Neurol 65: 1185–1189.
8. McKeeAC, GavettBE, SternRA, NowinskiCJ, CantuRC, et al. (2010) TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol 69: 918–929.
9. SchwabC, AraiT, HasegawaM, YuS, McGeerPL (2008) Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J Neuropathol Exp Neurol 67: 1159–1165.
10. Nakashima-YasudaH, UryuK, RobinsonJ, XieSX, HurtigH, et al. (2007) Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 114: 221–229.
11. HigashiS, IsekiE, YamamotoR, MinegishiM, HinoH, et al. (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies. Brain Res 1184: 284–294.
12. Amador-OrtizC, LinWL, AhmedZ, PersonettD, DaviesP, et al. (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann Neurol 61: 435–445.
13. WilsonRS, YuL, TrojanowskiJQ, ChenEY, BoylePA, et al. (2013) TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol 70: 1418–1424.
14. LiachkoNF, GuthrieCR, KraemerBC (2010) Phosphorylation Promotes Neurotoxicity in a Caenorhabditis elegans Model of TDP-43 Proteinopathy. J Neurosci 30: 16208–16219.
15. KabashiE, LinL, TradewellML, DionPA, BercierV, et al. (2010) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 19: 671–683.
16. LuY, FerrisJ, GaoFB (2009) Frontotemporal dementia and amyotrophic lateral sclerosis-associated disease protein TDP-43 promotes dendritic branching. Mol Brain 2: 30.
17. WegorzewskaI, BellS, CairnsNJ, MillerTM, BalohRH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 106: 18809–18814.
18. StallingsNR, PuttaparthiK, LutherCM, BurnsDK, ElliottJL (2010) Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol Dis 40: 404–414.
19. ZhouH, HuangC, ChenH, WangD, LandelCP, et al. (2010) transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet 6: e1000887.
20. LeeEB, LeeVM, TrojanowskiJQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13: 38–50.
21. HasegawaM, AraiT, NonakaT, KametaniF, YoshidaM, et al. (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64: 60–70.
22. NeumannM, KwongLK, LeeEB, KremmerE, FlatleyA, et al. (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117: 137–149.
23. LiachkoNF, McMillanPJ, GuthrieCR, BirdTD, LeverenzJB, et al. (2013) CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol 74: 39–52.
24. SaladoIG, RedondoM, BelloML, PerezC, LiachkoNF, et al. (2014) Protein Kinase CK-1 Inhibitors As New Potential Drugs for Amyotrophic Lateral Sclerosis. J Med Chem 57: 2755–2772.
25. ManningG (2005) Genomic overview of protein kinases. WormBook 1–19.
26. AltschulSF, GishW, MillerW, MyersEW, LipmanDJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
27. DereeperA, GuignonV, BlancG, AudicS, BuffetS, et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36: W465–469.
28. IkezuS, IkezuT (2014) Tau-tubulin kinase. Front Mol Neurosci 7: 33.
29. RenM, FengH, FuY, LandM, RubinCS (2009) Protein kinase D is an essential regulator of C. elegans innate immunity. Immunity 30: 521–532.
30. FuY, RubinCS (2011) Protein kinase D: coupling extracellular stimuli to the regulation of cell physiology. EMBO Rep 12: 785–796.
31. SatoS, CernyRL, BuescherJL, IkezuT (2006) Tau-tubulin kinase 1 (TTBK1), a neuron-specific tau kinase candidate, is involved in tau phosphorylation and aggregation. J Neurochem 98: 1573–1584.
32. FlotowH, GravesPR, WangAQ, FiolCJ, RoeskeRW, et al. (1990) Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem 265: 14264–14269.
33. StreetsAJ, NeedhamAJ, GillSK, OngAC (2010) Protein kinase D-mediated phosphorylation of polycystin-2 (TRPP2) is essential for its effects on cell growth and calcium channel activity. Mol Biol Cell 21: 3853–3865.
34. SturanyS, Van LintJ, MullerF, WildaM, HameisterH, et al. (2001) Molecular cloning and characterization of the human protein kinase D2. A novel member of the protein kinase D family of serine threonine kinases. J Biol Chem 276: 3310–3318.
35. TakahashiM, TomizawaK, SatoK, OhtakeA, OmoriA (1995) A novel tau-tubulin kinase from bovine brain. FEBS Lett 372: 59–64.
36. IguchiY, KatsunoM, TakagiS, IshigakiS, NiwaJ, et al. (2012) Oxidative stress induced by glutathione depletion reproduces pathological modifications of TDP-43 linked to TDP-43 proteinopathies. Neurobiol Dis 45: 862–870.
37. RizzardiniM, LupiM, BernasconiS, MangoliniA, CantoniL (2003) Mitochondrial dysfunction and death in motor neurons exposed to the glutathione-depleting agent ethacrynic acid. J Neurol Sci 207: 51–58.
38. TakahashiM, TomizawaK, SatoK, OhtakeA, OmoriA (1995) A novel tau-tubulin kinase from bovine brain. FEBS Lett 372: 59–64.
39. TomizawaK, OmoriA, OhtakeA, SatoK, TakahashiM (2001) Tau-tubulin kinase phosphorylates tau at Ser-208 and Ser-210, sites found in paired helical filament-tau. Febs Letters 492: 221–227.
40. MackenzieIR, NeumannM, BaborieA, SampathuDM, Du PlessisD, et al. (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122: 111–113.
41. InukaiY, NonakaT, AraiT, YoshidaM, HashizumeY, et al. (2008) Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Lett 582: 2899–2904.
42. WheelerDL, BarrettT, BensonDA, BryantSH, CaneseK, et al. (2005) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 33: D39–45.
43. KametaniF, NonakaT, SuzukiT, AraiT, DohmaeN, et al. (2009) Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem Biophys Res Commun 382: 405–409.
44. ChoksiDK, RoyB, ChatterjeeS, YusuffT, BakhoumMF, et al. (2014) TDP-43 Phosphorylation by casein kinase Iε promotes oligomerization and enhances toxicity in vivo. Hum Mol Genet 23: 1025–1035.
45. CarlomagnoY, ZhangY, DavisM, LinWL, CookC, et al. (2014) Casein Kinase II Induced Polymerization of Soluble TDP-43 into Filaments Is Inhibited by Heat Shock Proteins. PLoS One 9: e90452.
46. HangerDP, BettsJC, LovinyTLF, BlackstockWP, AndertonBH (1998) New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry. Journal of Neurochemistry 71: 2465–2476.
47. UryuK, Nakashima-YasudaH, FormanMS, KwongLK, ClarkCM, et al. (2008) Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 67: 555–564.
48. YokotaO, DavidsonY, BigioEH, IshizuH, TeradaS, et al. (2010) Phosphorylated TDP-43 pathology and hippocampal sclerosis in progressive supranuclear palsy. Acta Neuropathol 120: 55–66.
49. JosephsKA, HodgesJR, SnowdenJS, MackenzieIR, NeumannM, et al. (2011) Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122: 137–153.
50. Vázquez-HigueraJL, Martínez-GarcíaA, Sánchez-JuanP, Rodríguez-RodríguezE, MateoI, et al. (2011) Genetic variations in tau-tubulin kinase-1 are linked to Alzheimer's disease in a Spanish case-control cohort. Neurobiol Aging 32: 550.e555–559.
51. YuNN, YuJT, XiaoJT, ZhangHW, LuRC, et al. (2011) Tau-tubulin kinase-1 gene variants are associated with Alzheimer's disease in Han Chinese. Neurosci Lett 491: 83–86.
52. LundH, CowburnRF, GustafssonE, StrombergK, SvenssonA, et al. (2013) Tau-tubulin kinase 1 expression, phosphorylation and co-localization with phospho-Ser422 tau in the Alzheimer's disease brain. Brain Pathol 23: 378–389.
53. SatoS, XuJ, OkuyamaS, MartinezLB, WalshSM, et al. (2008) Spatial learning impairment, enhanced CDK5/p35 activity, and downregulation of NMDA receptor expression in transgenic mice expressing tau-tubulin kinase 1. J Neurosci 28: 14511–14521.
54. XuJ, SatoS, OkuyamaS, SwanRJ, JacobsenMT, et al. (2010) Tau-tubulin kinase 1 enhances prefibrillar tau aggregation and motor neuron degeneration in P301L FTDP-17 tau-mutant mice. FASEB J 24: 2904–2915.
55. HouldenH, JohnsonJ, Gardner-ThorpeC, LashleyT, HernandezD, et al. (2007) Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet 39: 1434–1436.
56. BouskilaM, EsoofN, GayL, FangEH, DeakM, et al. (2011) TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization and development. Biochem J 437: 157–167.
57. BrennerS (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
58. PlowmanGD, SudarsanamS, BinghamJ, WhyteD, HunterT (1999) The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc Natl Acad Sci U S A 96: 13603–13610.
59. WangD, KennedyS, ConteD, KimJK, GabelHW, et al. (2005) Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436: 593–597.
60. KraemerBC, SchellenbergGD (2007) SUT-1 enables tau-induced neurotoxicity in C. elegans. Hum Mol Genet 16: 1959–1971.
61. GuthrieCR, SchellenbergGD, KraemerBC (2009) SUT-2 potentiates tau-induced neurotoxicity in Caenorhabditis elegans. Hum Mol Genet 18: 1825–1838.
62. BurattiE, BrindisiA, GiombiM, TisminetzkyS, AyalaYM, et al. (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280: 37572–37584.
63. GoetzSC, LiemKF, AndersonKV (2012) The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell 151: 847–858.
64. OliveiraVC, CarraraRC, SimoesDL, SaggioroFP, CarlottiCG, et al. (2010) Sudan Black B treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections. Histol Histopathol 25: 1017–1024.
65. Kitano-TakahashiM, MoritaH, KondoS, TomizawaK, KatoR, et al. (2007) Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 63: 602–604.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in
- Maf1 Is a Novel Target of PTEN and PI3K Signaling That Negatively Regulates Oncogenesis and Lipid Metabolism
- The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis
- Echoes of the Past: Hereditarianism and