#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Evolution of Sex Ratio Distorter Suppression Affects a 25 cM Genomic Region in the Butterfly


The sex ratio of the offspring produced by an individual can be an evolutionary battleground. In many arthropod species, maternally inherited microbes selectively kill male hosts, and the host may in turn evolve strategies to restore the production or survival of males. When males are rare, the intensity of selection on the host may be extreme. We recently observed one such episode, in which the population sex ratio of the butterfly Hypolimnas bolina shifted from 100 females per male to near parity, through the evolution of a suppressor gene. In our current study, we investigate the hypothesis that the strength of selection in this case was so strong that the genomic impact would go well beyond the suppressor gene itself. After mapping the location of the suppressor within the genome of H. bolina, we examined changes in genetic variation at sites on the same chromosome as the suppressor. We show that a broad region of the genome was affected by the spread of the suppressor. Our data also suggest that the selection may have been sufficiently strong to introduce deleterious material into the population, which was later purged by selection.


Vyšlo v časopise: The Evolution of Sex Ratio Distorter Suppression Affects a 25 cM Genomic Region in the Butterfly. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004822
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004822

Souhrn

The sex ratio of the offspring produced by an individual can be an evolutionary battleground. In many arthropod species, maternally inherited microbes selectively kill male hosts, and the host may in turn evolve strategies to restore the production or survival of males. When males are rare, the intensity of selection on the host may be extreme. We recently observed one such episode, in which the population sex ratio of the butterfly Hypolimnas bolina shifted from 100 females per male to near parity, through the evolution of a suppressor gene. In our current study, we investigate the hypothesis that the strength of selection in this case was so strong that the genomic impact would go well beyond the suppressor gene itself. After mapping the location of the suppressor within the genome of H. bolina, we examined changes in genetic variation at sites on the same chromosome as the suppressor. We show that a broad region of the genome was affected by the spread of the suppressor. Our data also suggest that the selection may have been sufficiently strong to introduce deleterious material into the population, which was later purged by selection.


Zdroje

1. Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford: Clarendon Press. 272 p.

2. DüsingC (1884) Die Regulierung des Geschlechtsverha ltnisses bei der Vermehrung der Menschen, Tiere und Pflanzen. Jenaische Zeitschrift für Naturwissenschaft 17: 593–940.

3. JaenikeJ (2001) Sex chromosome meiotic drive. Annu Rev Ecol Syst 32: 25–49.

4. EngelstadterJ, HurstGDD (2009) The Ecology and Evolution of Microbes that Manipulate Host Reproduction. Annu Rev Ecol Evol Syst 40: 127–149.

5. DysonEA, HurstGDD (2004) Persistence of an extreme sex-ratio bias in a natural population. Proc Nat Acad Sci USA 101: 6520–6523.

6. HornettEA, CharlatS, DuplouyAMR, DaviesN, RoderickGK, et al. (2006) Evolution of Male Killer Suppression in a Natural Population. PLoS Biol 4: 1643–1648.

7. MajerusTMO, MajerusMEN (2010) Intergenomic Arms Races: Detection of a Nuclear Rescue Gene of Male-Killing in a Ladybird. Plos Pathog 6: e1000987.

8. DysonEM, KamathMK, HurstGDD (2002) Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): evidence for horizontal tranfer of a butterfly male killer. Heredity 88: 166–171.

9. HornettEA, CharlatS, WedellN, JigginsCD, HurstGDD (2009) Rapidly Shifting Sex Ratio across a Species Range. Curr Biol 19: 1628–1631.

10. CharlatS, HornettEA, DysonEA, HoPPY, LocNT, et al. (2005) Prevalence and penetrance variation of male-killing Wolbachia across Indo-Pacific populations of the butterfly Hypolimnas bolina. Mol Ecol 14: 3525–3530.

11. CharlatS, HornettEA, FullardJH, DaviesN, RoderickGK, et al. (2007) Extraordinary flux in sex ratio. Science 317: 214–214.

12. SmithJM, HaighJ (1974) The hitchhiking effect of a favourable gene. Genet Res 23: 23–35.

13. NielsenR, WilliamsonS, KimY, HubiszMJ, ClarkAG, et al. (2005) Genomic scans for selective sweeps using SNP data. Genome Res 15: 1566–1575.

14. Robinson R (1971) Lepidoptera genetics. Oxford: Pergamon Press. 687 p.

15. HanrahanSJ, JohnstonJS (2011) New genome size estimates of 134 species of arthropods. Chromosome Res 19: 809–823.

16. HornettEA, EngelstadterJ, HurstGDD (2010) Hidden cytoplasmic incompatibility alters the dynamics of male-killer/host interactions. J Evol Biol 23: 479–487.

17. HornettEA, DuplouyAMR, DaviesN, RoderickGK, WedellN, et al. (2008) You can't keep a good parasite down: Evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. Evolution 62: 1258–1263.

18. Agresti A (2007) An Introduction to Categorical Data Analysis, 2nd ed. New York: John Wiley & Sons.

19. KimuraM (1955) Solution of a process of random genetic drift with a continuous model. Proc Nat Acad Sci USA 41: 144–150.

20. MaWJ, VavreF, BeukeboomLW (2014) Manipulation of Arthropod Sex Determination by Endosymbionts: Diversity and Molecular Mechanisms. Sex Dev 8: 59–73.

21. SugimotoTN, IshikawaY (2012) A male-killing Wolbachia carries a feminizing factor and is associated with degradation of the sex-determining system of its host. Biol Lett 8: 412–415.

22. PringleEG, BaxterSW, WebsterCL, PapanicolaouA, LeeSF, et al. (2007) Synteny and chromosome evolution in the lepidoptera: Evidence from mapping in Heliconius melpomene. Genetics 177: 417–426.

23. OstlundG, SchmittT, ForslundK, KostlerT, MessinaDN, et al. (2010) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38: D196–D203.

24. LarkinMA, BlackshieldsG, BrownNP, ChennaR, McGettiganPA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

25. TurnerJRG, SheppardPM (1975) Absence of crossing-over in female butterflies (Heliconius). Heredity 34: 265–269.

26. Van OoijenJW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genetics Res 93: 343–349.

27. StephensM, ScheetP (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76: 449–462.

28. StephensM, SmithNJ, DonnellyP (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68: 978–989.

29. RoussetF (2008) GENEPOP ' 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8: 103–106.

30. LibradoP, RozasJ (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#