Genetic Control of Contagious Asexuality in the Pea Aphid
Asexual lineages occur in most groups of organisms and arise from loss of sex in sexual species. Yet, the genomic bases of these transitions remain largely unknown. Here, we combined quantitative genetic and population genomic approaches to unravel the genetic control of shifts towards permanent asexuality in the pea aphid, which conveniently shows coexisting sexual and asexual lineages. We identified one main genomic region responsible for this transition located on the X chromosome. Also, our population genetic data indicated substantial gene exchange between these reproductively distinct lineages, potentially leading to the conversion of some sexual lineages into asexual ones in a contagious manner. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual lineages.
Vyšlo v časopise:
Genetic Control of Contagious Asexuality in the Pea Aphid. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004838
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004838
Souhrn
Asexual lineages occur in most groups of organisms and arise from loss of sex in sexual species. Yet, the genomic bases of these transitions remain largely unknown. Here, we combined quantitative genetic and population genomic approaches to unravel the genetic control of shifts towards permanent asexuality in the pea aphid, which conveniently shows coexisting sexual and asexual lineages. We identified one main genomic region responsible for this transition located on the X chromosome. Also, our population genetic data indicated substantial gene exchange between these reproductively distinct lineages, potentially leading to the conversion of some sexual lineages into asexual ones in a contagious manner. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual lineages.
Zdroje
1. NeavesWB, BaumannP (2011) Unisexual reproduction among vertebrates. Trends Genet 27: 81–88.
2. NormarkBB (2003) The evolution of alternative genetic systems in insects. Annu Rev Entomol 48: 397–423.
3. Schön I, Martens K, van Dijk PJ (2009) Lost Sex – The Evolutionary Biology of Parthenogenesis; Schön I, Martens K, van Dijk PJ, editors. Berlin: Springer-Verlag.
4. Bell G (1982) The Masterpiece of Nature: The Evolution and Genetics of Sexuality. Berkeley: University of California Press.
5. PlantardO, RasplusJY, MondorG, Le ClaincheI, SolignacM (1998) Wolbachia-induced thelytoky in the rose gallwasp Diplolepis spinosissimae (Giraud) (Hymenoptera : Cynipidae), and its consequences on the genetic structure of its host. Proc R Soc B-Biol Sci 265: 1075–1080.
6. DelmotteF, Sabater-MunozB, Prunier-LetermeN, LatorreA, SunnucksP, et al. (2003) Phylogenetic evidence for hybrid origins of asexual lineages in an aphid species. Evolution 57: 1291–1303.
7. TuckerAE, AckermanMS, EadsBD, XuS, LynchM (2013) Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc Natl Acad Sci USA 110: 15740–15745.
8. DelmotteF, LetermeN, BonhommeJ, RispeC, SimonJC (2001) Multiple routes to asexuality in an aphid species. Proc R Soc B-Biol Sci 268: 2291–2299.
9. SimonJC, DelmotteF, RispeC, CreaseT (2003) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linnean Soc 79: 151–163.
10. DedryverCA, Le GallicJF, MaheoF, SimonJC, DedryverF (2013) The genetics of obligate parthenogenesis in an aphid species and its consequences for the maintenance of alternative reproductive modes. Heredity 110: 39–45.
11. LynchM, SeyfertA, EadsB, WilliamsE (2008) Localization of the genetic determinants of meiosis suppression in Daphnia pulex. Genetics 180: 317–327.
12. EadsBD, TsuchiyaD, AndrewsJ, LynchM, ZolanME (2012) The spread of a transposon insertion in Rec8 is associated with obligate asexuality in Daphnia. Proc Natl Acad Sci USA 109: 858–863.
13. LattorffHMG, MoritzRFA, FuchsS (2005) A single locus determines thelytokous parthenogenesis of laying honeybee workers (Apis mellifera capensis). Heredity 94: 533–537.
14. SandrockC, VorburgerC (2011) Single-locus recessive inheritance of asexual reproduction in a parasitoid wasp. Curr Biol 21: 433–437.
15. StelzerCP, SchmidtJ, WiedlroitherA, RissS (2010) Loss of sexual reproduction and dwarfing in a small metazoan. Plos One 5: e12854.
16. DavisGK (2012) Cyclical parthenogenesis and viviparity in aphids as evolutionary novelties. J Exp Zool Part B 318B: 448–459.
17. WilsonACC, SunnucksP, HalesDF (1997) Random loss of X chromosome at male determination in an aphid, Sitobion near fragariae, detected using an X-linked polymorphic microsatellite marker. Genet Res 69: 233–236.
18. SimonJC, RispeC, SunnucksP (2002) Ecology and evolution of sex in aphids. Trends Ecol Evol 17: 34–39.
19. SimonJC, StoeckelS, TaguD (2010) Evolutionary and functional insights into reproductive strategies of aphids. C R Biol 333: 488–496.
20. DedryverCA, HulléM, Le GallicJF, CaillaudMC, SimonJC (2001) Coexistence in space and time of sexual and asexual populations of the cereal aphid Sitobion avenae. Oecologia 128: 379–388.
21. RispeC, PierreJS, SimonJC, GouyonPH (1998) Models of sexual and asexual coexistence in aphids based on constraints. J Evol Biol 11: 685–701.
22. HalkettF, PlantegenestM, BonhommeJ, SimonJC (2008) Gene flow between sexual and facultatively asexual lineages of an aphid species and the maintenance of reproductive mode variation. Mol Ecol 17: 2998–3007.
23. HalkettF, KindlmannP, PlantegenestM, SunnucksP, SimonJC (2006) Temporal differentiation and spatial coexistence of sexual and facultative asexual lineages of an aphid species at mating sites. J Evol Biol 19: 809–815.
24. FrantzA, PlantegenestM, SimonJC (2006) Temporal habitat variability and the maintenance of sex in host populations of the pea aphid. Proc R Soc B-Biol Sci 273: 2887–2891.
25. ViaS, ConteG, Mason-FoleyC, MillsK (2012) Localizing F-ST outliers on a QTL map reveals evidence for large genomic regions of reduced gene exchange during speciation-with-gene-flow. Mol Ecol 21: 5546–5560.
26. HawthorneDJ, ViaS (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412: 904–907.
27. SloaneMA, SunnucksP, WilsonACC, HalesDF (2001) Microsatellite isolation, linkage group identification and determination of recombination frequency in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera : Aphididae). Genet Res 77: 251–260.
28. WrightS (1931) Evolution in mendelian populations. Genetics 16: 97–159.
29. MillsLS, AllendorfFW (1996) The one-migrant-per-generation rule in conservation and management. Conserv Biol 10: 1509–1518.
30. RispeC, PierreJS (1998) Coexistence between cyclical parthenogens, obligate parthenogens, and intermediates in a fluctuating environment. J Theor Biol 195: 97–110.
31. BallouxF, LehmannL, de MeeusT (2003) The population genetics of clonal and partially clonal diploids. Genetics 164: 1635–1644.
32. PaczesniakD, AdolfssonS, LiljeroosK, KlappertK, LivelyCM, et al. (2014) Faster clonal turnover in high-infection habitats provides evidence for parasite-mediated selection. J Evol Biol 27: 417–428.
33. MullerHJ (1964) The relation of recombination to mutational advance. Mutat Res 106: 2–9.
34. Maynard Smith J (1978) The evolution of sex: Cambridge University Press.
35. CharlesworthB, CharlesworthD (1975) Experiment on recombination load in Drosophila melanogaster. Genet Res 25: 267–274.
36. IAGC (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. Plos Biol 8: e1000313.
37. Le TrionnaireG, FrancisF, Jaubert-PossamaiS, BonhommeJ, De PauwE, et al. (2009) Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid. Bmc Genomics 10: 456.
38. CorbittTS, HardieJ (1985) Juvenile hormone effects on polymorphism in the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl 38: 131–135.
39. GallotA, ShigenobuS, HashiyamaT, Jaubert-PossamaiS, TaguD (2012) Sexual and asexual oogenesis require the expression of unique and shared sets of genes in the insect Acyrthosiphon pisum. Bmc Genomics 13: 76.
40. PeccoudJ, de la HuertaM, BonhommeJ, LaurenceC, OutremanY, et al. (2014) Widespread host-dependent hybrid unfitness in the pea aphid species complex. Evolution 68: 2983–2995.
41. FerrariJ, ViaS, GodfrayHCJ (2008) Population differentiation and genetic variation in performance on eight hosts in the pea aphid complex. Evolution 62: 2508–2524.
42. JaquiéryJ, RispeC, RozeD, LegeaiF, Le TrionnaireG, et al. (2013) Masculinization of the X chromosome in the pea aphid. Plos Genet 9: e1003690.
43. JaquiéryJ, StoeckelS, NouhaudP, MieuzetL, MaheoF, et al. (2012) Genome scans reveal candidate regions involved in the adaptation to host plant in the pea aphid complex. Mol Ecol 21: 5251–5264.
44. JaquiéryJ, StoeckelS, RispeC, MieuzetL, LegeaiF, et al. (2012) Accelerated evolution of sex chromosomes in aphids, an X0 system. Mol Biol Evol 29: 837–847.
45. HalesDF, WilsonACC, SloaneMA, ChristophesimonJ, LegallicJF, et al. (2002) Lack of detectable genetic recombination on the X chromosome during the parthenogenetic production of female and male aphids. Genet Res 79: 203–209.
46. Green P, Falls K, Crooks S (1990) Documentation for CRIMAP, version 2.4.
47. VoorripsRE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93: 77–78.
48. GilbertH, Le RoyP, MorenoC, RobelinD, ElsenJM (2008) QTLMAP, a software for QTL detection in outbred populations. Ann Hum Genet 72: 694–694.
49. SimonJ, LetermeN, LatorreA (1999) Molecular markers linked to breeding system differences in segregating and natural populations of the cereal aphid Rhopalosiphum padi L. Mol Ecol 8: 965–973.
50. BacciuN, Bed'HomB, FilangiO, RomeH, GourichonD, et al. (2014) QTL detection for coccidiosis (Eimeria tenella) resistance in a Fayoumi x Leghorn F-2 cross, using a medium-density SNP panel. Genet Sel Evol 46: 14.
51. Kileh-WaisM, ElsenJM, VignalA, FevesK, VignolesF, et al. (2013) Detection of QTL controlling metabolism, meat quality, and liver quality traits of the overfed interspecific hybrid mule duck. J Anim Sci 91: 588–604.
52. PeccoudJ, OllivierA, PlantegenestM, SimonJC (2009) A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc Natl Acad Sci USA 106: 7495–7500.
53. PeelMC, FinlaysonBL, McMahonTA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 11: 1633–1644.
54. ExcoffierL, HoferT, FollM (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103: 285–298.
55. ExcoffierL, LischerHEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in
- Maf1 Is a Novel Target of PTEN and PI3K Signaling That Negatively Regulates Oncogenesis and Lipid Metabolism
- The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis
- Echoes of the Past: Hereditarianism and