#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Natural Variation Is Associated With Genome-Wide Methylation Changes and Temperature Seasonality


A central problem when studying adaptation to a new environment is the interplay between genetic variation and phenotypic plasticity. Arabidopsis thaliana has colonized a wide range of habitats across the world and it is therefore an attractive model for studying the genetic mechanisms underlying environmental adaptation. Here, we study two collections of A. thaliana accessions from across Eurasia to identify loci associated with differences in climates at the sampling sites. A new genome-wide association analysis method was developed to detect adaptive loci where the alleles tolerate different climate ranges. Sixteen novel such loci were found including a strong association between Chromomethylase 2 (CMT2) and temperature seasonality. The reference allele dominated in areas with less seasonal variability in temperature, and the alternative allele existed in both stable and variable regions. Our results thus link natural variation in CMT2 and epigenetic changes to temperature adaptation. We showed experimentally that plants with a defective CMT2 gene tolerate heat-stress better than plants with a functional gene. Together this strongly suggests a role for genetic regulation of epigenetic modifications in natural adaptation to temperature and illustrates the importance of re-analyses of existing data using new analytical methods to obtain deeper insights into the underlying biology from available data.


Vyšlo v časopise: Natural Variation Is Associated With Genome-Wide Methylation Changes and Temperature Seasonality. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004842
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004842

Souhrn

A central problem when studying adaptation to a new environment is the interplay between genetic variation and phenotypic plasticity. Arabidopsis thaliana has colonized a wide range of habitats across the world and it is therefore an attractive model for studying the genetic mechanisms underlying environmental adaptation. Here, we study two collections of A. thaliana accessions from across Eurasia to identify loci associated with differences in climates at the sampling sites. A new genome-wide association analysis method was developed to detect adaptive loci where the alleles tolerate different climate ranges. Sixteen novel such loci were found including a strong association between Chromomethylase 2 (CMT2) and temperature seasonality. The reference allele dominated in areas with less seasonal variability in temperature, and the alternative allele existed in both stable and variable regions. Our results thus link natural variation in CMT2 and epigenetic changes to temperature adaptation. We showed experimentally that plants with a defective CMT2 gene tolerate heat-stress better than plants with a functional gene. Together this strongly suggests a role for genetic regulation of epigenetic modifications in natural adaptation to temperature and illustrates the importance of re-analyses of existing data using new analytical methods to obtain deeper insights into the underlying biology from available data.


Zdroje

1. HancockAM, BrachiB, FaureN, HortonMW, JarymowyczLB, et al. (2011) Adaptation to Climate Across the Arabidopsis thaliana Genome. Science 334: 83–86.

2. CaoJ, SchneebergerK, OssowskiS, GüntherT, BenderS, et al. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43: 956–963 doi:10.1038/ng.911

3. OssowskiS, SchneebergerK, ClarkRM, LanzC, WarthmannN, et al. (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Research 18: 2024–2033 doi:10.1101/gr.080200.108

4. SchneebergerK, HagmannJ, OssowskiS, WarthmannN, GesingS, et al. (2009) Simultaneous alignment of short reads against multiple genomes. Genome Biol 10: R98 doi:10.1186/gb-2009-10-9-r98

5. SchneebergerK, OssowskiS, OttF, KleinJD, WangX, et al. (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National Academy of Sciences 108: 10249–10254 doi:10.1073/pnas.1107739108

6. LongQ, RabanalFA, MengD, HuberCD, FarlowA, et al. (2013) Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat Genet 45: 884–890 doi:10.1038/ng.2678

7. SchmitzRJ, SchultzMD, UrichMA, NeryJR, PelizzolaM, et al. (2013) Patterns of population epigenomic diversity. Nature 495: 193–198 doi:10.1038/nature11968

8. Fournier-LevelA, KorteA, CooperMD, NordborgM, SchmittJ, et al. (2011) A Map of Local Adaptation in Arabidopsis thaliana. Science 334: 86–89.

9. HortonMW, HancockAM, HuangYS, ToomajianC, AtwellS, et al. (2012) Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet 44: 212–216 doi:10.1038/ng.1042

10. Geiler-SamerotteK, BauerC, LiS, ZivN, GreshamD, et al. (2013) The details in the distributions: why and how to study phenotypic variability. Current Opinion in Biotechnology: 1–8. doi:10.1016/j.copbio.2013.03.010

11. PetterssonME, NelsonRM, CarlborgÖ (2012) Selection on variance-controlling genes: adaptability or stability. Evolution 66: 3945–3949 doi:10.1111/j.1558-5646.2012.01753.x

12. ShenX, PetterssonM, RönnegårdL, CarlborgÖ (2012) Inheritance beyond plain heritability: variance-controlling genes in Arabidopsis thaliana. PLoS Genet 8: e1002839 doi:10.1371/journal.pgen.1002839

13. ShenX, AlamM, FikseF, RönnegårdL (2013) A novel generalized ridge regression method for quantitative genetics. Genetics 193: 1255–1268 doi:10.1534/genetics.112.146720

14. BaxterI, BrazeltonJN, YuD, HuangYS, LahnerB, et al. (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet 6: e1001193 doi:10.1371/journal.pgen.1001193

15. TrontinC, TisnéS, BachL, LoudetO (2011) What does Arabidopsis natural variation teach us (and does not teach us) about adaptation in plants? Curr Opin Plant Biol 14: 225–231 doi:10.1016/j.pbi.2011.03.024

16. WeigelD (2012) Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiology 158: 2–22 doi:10.1104/pp.111.189845

17. SasidharanR, ChinnappaCC, StaalM, ElzengaJTM, YokoyamaR, et al. (2010) Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases. Plant Physiology 154: 978–990 doi:10.1104/pp.110.162057

18. SungS, SchmitzRJ, AmasinoRM (2006) A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes & Development 20: 3244–3248 doi:10.1101/gad.1493306

19. De LuciaF, CrevillenP, JonesAME, GrebT, DeanC (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proceedings of the National Academy of Sciences 105: 16831–16836 doi:10.1073/pnas.0808687105

20. KimD-H, SungS (2010) The Plant Homeo Domain finger protein, VIN3-LIKE 2, is necessary for photoperiod-mediated epigenetic regulation of the floral repressor, MAF5. Proceedings of the National Academy of Sciences 107: 17029–17034 doi:10.1073/pnas.1010834107

21. PanikulangaraTJ, Eggers-SchumacherG, WunderlichM, StranskyH, SchöfflF (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiology 136: 3148–3158 doi:10.1104/pp.104.042606

22. TajiT, OhsumiC, IuchiS, SekiM, KasugaM, et al. (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29: 417–426.

23. BarrickJE, LenskiRE (2013) Genome dynamics during experimental evolution. Nat Rev Genet 14: 827–839 doi:10.1038/nrg3564

24. ZemachA, KimMY, HsiehP-H, Coleman-DerrD, Eshed-WilliamsL, et al. (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153: 193–205 doi:10.1016/j.cell.2013.02.033

25. StroudH, DoT, DuJ, ZhongX, FengS, et al. (2013) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21: 64–72 doi:10.1038/nsmb.2735

26. Joshua G Dunn CKFNGBERGJSW (2014) Correction: Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 3. doi:10.7554/eLife.03178.

27. ItoH, GaubertH, BucherE, MirouzeM, VaillantI, et al. (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472: 115–119 doi:10.1038/nature09861

28. AtwellS, HuangYS, VilhjálmssonBJ, WillemsG, HortonM, et al. (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465: 627–631 doi:10.1038/nature08800

29. DowenRH, PelizzolaM, SchmitzRJ, ListerR, DowenJM, et al. (2012) Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences 109: E2183–E2191 doi:10.1073/pnas.1209329109

30. ShenX, CarlborgÖ (2013) Beware of risk for increased false positive rates in genome-wide association studies for phenotypic variability. Front Genet 4: 93 doi:10.3389/fgene.2013.00093

31. Dubin MJ, Zhang P, Meng D, Remigereau M-S, Osborne EJ, et al. (2014) DNA methylation variation in Arabidopsis has a genetic basis and shows evidence of local adaptation. arXiv: 1410.5723 [q-bio.GN].

32. KöhlerC, WolffP, SpillaneC (2012) Epigenetic mechanisms underlying genomic imprinting in plants. Annu Rev Plant Biol 63: 331–352 doi:10.1146/annurev-arplant-042811-105514

33. KilianJ, WhiteheadD, HorakJ, WankeD, WeinlS, et al. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal 50: 347–363 Available: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2007.03052.x/full.

34. Shen X, Li Y, Rönnegård L, Uden P, Carlborg Ö (2014) Application of a genomic model for high-dimensional chemometric analysis. Journal of Chemometrics: n/a–n/a.

35. ChenW-M, AbecasisGR (2007) Family-based association tests for genomewide association scans. Am J Hum Genet 81: 913–926 doi:10.1086/521580

36. AulchenkoYS, RipkeS, IsaacsA, van DuijnCM (2007) GenABEL: an R package for genome-wide association analysis. Bioinformatics 23: 1294–1296.

37. DevlinB, RoederK (1999) Genomic control for association studies. Biometrics 55: 997–1004.

38. RönnegårdL, ShenX, AlamM (2010) hglm: A package for fitting hierarchical generalized linear models. The R Journal 2: 20–28.

39. McLarenW, PritchardB, RiosD, ChenY, FlicekP, et al. (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26: 2069–2070 doi:10.1093/bioinformatics/btq330

40. LiX, KierczakM, ShenX, AhsanM, CarlborgÖ, et al. (2013) PASE: a novel method for functional prediction of amino acid substitutions based on physicochemical properties. Front Genet 4: 21 doi:10.3389/fgene.2013.00021

41. AlonsoJM (2003) Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 301: 653–657 doi:10.1126/science.1086391

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#