#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Epigenome-Guided Analysis of the Transcriptome of Plaque Macrophages during Atherosclerosis Regression Reveals Activation of the Wnt Signaling Pathway


Atherosclerosis, a progressive accumulation of lipid-rich plaque within arteries, is an inflammatory disease in which the response of macrophages (a key cell type of the innate immune system) to plasma lipoproteins plays a central role. In humans, the goal of significantly reducing already-established plaque through drug treatments, including statins, remains elusive. In mice, atherosclerosis can be reversed by experimental manipulations that lower circulating lipid levels. A common feature of many regression models is that macrophages transition to a less inflammatory state and emigrate from the plaque. While the molecular regulators that control these responses are largely unknown, we hypothesized that by integrating global measurements of macrophage gene expression in regressing plaques with measurements of the macrophage chromatin landscape, we could identify key molecules that control macrophage responses to the lowering of circulating lipid levels. Our systems biology analysis of plaque macrophages yielded a network in which the Wnt signaling pathway emerged as a candidate upstream regulator. Wnt signaling is known to affect both inflammation and the ability of macrophages to migrate from one location to another, and our targeted validation studies provide evidence that Wnt signaling is increased in plaque macrophages during regression. Our findings both demonstrate the power of a systems approach to uncover candidate regulators of regression and to identify a potential new therapeutic target.


Vyšlo v časopise: Epigenome-Guided Analysis of the Transcriptome of Plaque Macrophages during Atherosclerosis Regression Reveals Activation of the Wnt Signaling Pathway. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004828
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004828

Souhrn

Atherosclerosis, a progressive accumulation of lipid-rich plaque within arteries, is an inflammatory disease in which the response of macrophages (a key cell type of the innate immune system) to plasma lipoproteins plays a central role. In humans, the goal of significantly reducing already-established plaque through drug treatments, including statins, remains elusive. In mice, atherosclerosis can be reversed by experimental manipulations that lower circulating lipid levels. A common feature of many regression models is that macrophages transition to a less inflammatory state and emigrate from the plaque. While the molecular regulators that control these responses are largely unknown, we hypothesized that by integrating global measurements of macrophage gene expression in regressing plaques with measurements of the macrophage chromatin landscape, we could identify key molecules that control macrophage responses to the lowering of circulating lipid levels. Our systems biology analysis of plaque macrophages yielded a network in which the Wnt signaling pathway emerged as a candidate upstream regulator. Wnt signaling is known to affect both inflammation and the ability of macrophages to migrate from one location to another, and our targeted validation studies provide evidence that Wnt signaling is increased in plaque macrophages during regression. Our findings both demonstrate the power of a systems approach to uncover candidate regulators of regression and to identify a potential new therapeutic target.


Zdroje

1. Alwan A, Armstrong T, Bettcher D, Boerma T, Branca F, et al. (2011) Global Atlas on Cardiovascular Diseases Prevention and Control. Mendes S, Puska P, Norrving B, editors Geneva: World Health Organization.

2. OlivaA, FloresJ, MerigioliS, LeDucL, BenitoB, et al. (2011) Autopsy investigation and Bayesian approach to coronary artery disease in victims of motor-vehicle accidents. Atherosclerosis 218: 28–32 doi:10.1016/j.atherosclerosis.2011.05.012

3. McGillHC, McMahanCA, GiddingSS (2008) Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation 117: 1216–1227 doi:10.1161/CIRCULATIONAHA.107.717033

4. WilsonPW, D'AgostinoRB, LevyD, BelangerAM, SilbershatzH, et al. (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97: 1837–1847 doi:10.1161/01.CIR.97.18.1837

5. ReardonMF, NestelPJ, CraigIH, HarperRW (1985) Lipoprotein predictors of the severity of coronary artery disease in men and women. Circulation 71: 881–888 doi:10.1161/01.CIR.71.5.881

6. WilliamsKJ, FeigJE, FisherEA (2008) Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat Clin Pract Cardiovasc Med 5: 91–102 doi:10.1038/ncpcardio1086

7. FrancisAA, PierceGN (2011) An integrated approach for the mechanisms responsible for atherosclerotic plaque regression. Exp Clin Cardiol 16: 77–86.

8. HewingB, FisherEA (2012) Preclinical mouse models and methods for the discovery of the causes and treatments of atherosclerosis. Expert Opin Drug Discov 7: 207–216 doi:10.1517/17460441.2012.660143

9. HanssonGK, HermanssonA (2011) The immune system in atherosclerosis. Nat Immunol 12: 204–212 doi:10.1038/ni.2001

10. MooreKJ, TabasI (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145: 341–355.

11. LiAC, GlassCK (2002) The macrophage foam cell as a target for therapeutic intervention. Nat Med 8: 1235–1242 doi:10.1038/nm1102-1235

12. RossR (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340: 115–126 doi:10.1056/NEJM199901143400207

13. ShahPK, FalkE, BadimonJJ, Fernandez-OrtizA, MailhacA, et al. (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92: 1565–1569.

14. LibbyP, GengYJ, AikawaM, SchoenbeckU, MachF, et al. (1996) Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 7: 330–335.

15. DaoudAS, FritzKE, JarmolychJ, FrankAS (1985) Role of macrophages in regression of atherosclerosis. Ann N Y Acad Sci 454: 101–114.

16. TangiralaRK, TsukamotoK, ChunSH, UsherD, PureE, et al. (1999) Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation 100: 1816–1822 doi:10.1161/01.CIR.100.17.1816

17. PotteauxS, GautierEL, HutchisonSB, van RooijenN, RaderDJ, et al. (2011) Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe−/− mice during disease regression. J Clin Invest 121: 2025–2036 doi:10.1172/JCI43802

18. RaffaiRL, WeisgraberKH (2002) Hypomorphic apolipoprotein E mice: a new model of conditional gene repair to examine apolipoprotein E-mediated metabolism. J Biochem 277: 11064–11068 doi:10.1074/jbc.M111222200

19. LieuHD, WithycombeSK, WalkerQ, RongJX, WalzemRL, et al. (2003) Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation 107: 1315–1321.

20. FeigJE, ParathathS, RongJX, MickSL, VengrenyukY, et al. (2011) Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 123: 989–998 doi:10.1161/CIRCULATIONAHA.110.984146

21. TroganE, FayadZA, ItskovichVV, AguinaldoJ-GS, ManiV, et al. (2004) Serial studies of mouse atherosclerosis by in vivo magnetic resonance imaging detect lesion regression after correction of dyslipidemia. Arterioscler Thromb Vasc Biol 24: 1714–1719 doi:10.1161/01.ATV.0000139313.69015.1c

22. LlodraJ, AngeliV, LiuJ, TroganE, FisherEA, et al. (2004) Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci USA 101: 11779–11784 doi:10.1073/pnas.0403259101

23. TroganE, FeigJE, DoganS, RothblatGH, AngeliV, et al. (2006) Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc Natl Acad Sci U S A 103: 3781–3786 doi:10.1073/pnas.0511043103

24. FeigJE, ShangY, RotllanN, VengrenyukY, WuC, et al. (2011) Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS ONE 6: e28534 doi:10.1371/journal.pone.0028534

25. ToomeyS, HarhenB, RocheHM, FitzgeraldD, BeltonO (2006) Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis 187: 40–49 doi:10.1016/j.atherosclerosis.2005.08.024

26. HewingB, ParathathS, MaiCK, FielMI, GuoL, et al. (2013) Rapid regression of atherosclerosis with MTP inhibitor treatment. Atherosclerosis 227: 125–129 doi:10.1016/j.atherosclerosis.2012.12.026

27. ShahPK, YanoJ, ReyesO, ChyuKY, KaulS, et al. (2001) High-dose recombinant apolipoprotein A-IMilano mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein E-deficient mice. Potential implications for acute plaque stabilization. Circulation 103: 3047–3050 doi:10.1161/hc2501.092494

28. FeigJE, RongJX, ShamirR, SansonM, VengrenyukY, et al. (2011) HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proceedings of the National Academy of Sciences 108: 7166–7171 doi:10.1073/pnas.1016086108

29. SkogsbergJ, LundstromJ, KovacsA, NilssonR, NooriP, et al. (2008) Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes. PLoS Genet 4: e1000036 doi:10.1371/journal.pgen.1000036

30. BjörkegrenJLM, HäggS, TalukdarHA, Foroughi AslH, JainRK, et al. (2014) Plasma cholesterol–induced lesion networks activated before regression of early, mature, and advanced atherosclerosis. PLoS Genet 10: e1004201 doi:10.1371/journal.pgen.1004201.s019

31. ChereshnevI, TroganE, OmerhodzicS, ItskovichV, AguinaldoJ-G, et al. (2003) Mouse model of heterotopic aortic arch transplantation. J Surg Res 111: 171–176 doi:10.1016/S0022-4804(03)00039-8

32. VéniantMM, ZlotCH, WalzemRL, PierottiV, DriscollR, et al. (1998) Lipoprotein clearance mechanisms in LDL receptor-deficient “Apo-B48-only” and “Apo-B100-only” mice. J Clin Invest 102: 1559–1568 doi:10.1172/JCI4164

33. VéniantMM, SullivanMA, KimSK, AmbroziakP, ChuA, et al. (2000) Defining the atherogenicity of large and small lipoproteins containing apolipoprotein B100. J Clin Invest 106: 1501–1510 doi:10.1172/JCI10695

34. RaabeM, VéniantMM, SullivanMA, ZlotCH, BjorkegrenJ, et al. (1999) Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J Clin Invest 103: 1287–1298 doi:10.1172/JCI6576

35. PlumpAS, SmithJD, HayekT, Aalto-SetäläK, WalshA, et al. (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71: 343–353.

36. FeigJE, VengrenyukY, ReiserV, WuC, StatnikovA, et al. (2012) Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS ONE 7: e39790 doi:10.1371/journal.pone.0039790.t001

37. MartinezFO, GordonS, LocatiM, MantovaniA (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177: 7303–7311.

38. Vettese-DadeyM, GrantPA, HebbesTR, Crane- RobinsonC, AllisCD, et al. (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J 15: 2508–2518.

39. RamseySA, KnijnenburgTA, KennedyKA, ZakDE, GilchristM, et al. (2010) Genome-wide histone acetylation data improve prediction of mammalian transcription factor binding sites. Bioinformatics 26: 2071–2075 doi:10.1093/bioinformatics/btq405

40. SongL, ZhangZ, GrasfederLL, BoyleAP, GiresiPG, et al. (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 21: 1757–1767 doi:10.1101/gr.121541.111

41. LoganCY, NusseR (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20: 781–810 doi:10.1146/annurev.cellbio.20.010403.113126

42. MosimannC, HausmannG, BaslerK (2009) Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 10: 276–286 doi:10.1038/nrm2654

43. PereiraCP, BachliEB, SchoedonG (2009) The Wnt pathway: a macrophage effector molecule that triggers inflammation. Curr Atheroscler Rep 11: 236–242.

44. Amini-NikS, CambridgeE, YuW, GuoA, WhetstoneH, et al. (2014) β-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest 124: 2599–2610 doi:10.1172/JCI62059

45. TroganE, ChoudhuryRP, DanskyHM, RongJX, BreslowJL, et al. (2002) Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 99: 2234–2239 doi:10.1073/pnas.042683999

46. TroganE, FisherEA (2005) Laser capture microdissection for analysis of macrophage gene expression from atherosclerotic lesions. Methods Mol Biol 293: 221–231.

47. EnglishSB, ButteAJ (2007) Evaluation and integration of 49 genome-wide experiments and the prediction of previously unknown obesity-related genes. Bioinformatics 23: 2910–2917 doi:10.1093/bioinformatics/btm483

48. ZellerT, WildP, SzymczakS, RotivalM, SchillertA, et al. (2010) Genetics and beyond–the transcriptome of human monocytes and disease susceptibility. PLoS ONE 5: e10693 doi:10.1371/journal.pone.0010693.t007

49. FairfaxBP, MakinoS, RadhakrishnanJ, PlantK, LeslieS, et al. (2012) Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet 44: 502–510 doi:10.1038/ng.2205

50. Genomes Project Consortium (2012) AbecasisGR, AutonA, BrooksLD, DePristoMA, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65 doi:10.1038/nature11632

51. RamosEM, HoffmanD, JunkinsHA, MaglottD, PhanL, et al. (2014) Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources. Eur J Hum Genet 22: 144–147 doi:10.1038/ejhg.2013.96

52. KleberME, RennerW, GrammerTB, Linsel-NitschkeP, BoehmBO, et al. (2010) Association of the single nucleotide polymorphism rs599839 in the vicinity of the sortilin 1 gene with LDL and triglyceride metabolism, coronary heart disease and myocardial infarction. The Ludwigshafen Risk and Cardiovascular Health Study. Atherosclerosis 209: 492–497 doi:10.1016/j.atherosclerosis.2009.09.068

53. ZhouL, DingH, ZhangX, HeM, HuangS, et al. (2011) Genetic variants at newly identified lipid loci are associated with coronary heart disease in a Chinese Han population. PLoS ONE 6: e27481 doi:10.1371/journal.pone.0027481

54. SamaniNJ, ErdmannJ, HallAS, HengstenbergC, ManginoM, et al. (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357: 443–453 doi:10.1056/NEJMoa072366

55. Coronary Artery Disease Consortium (2009) SamaniNJ, DeloukasP, ErdmannJ, HengstenbergC, et al. (2009) Large scale association analysis of novel genetic loci for coronary artery disease. Arterioscler Thromb Vasc Biol 29: 774–780 doi:10.1161/ATVBAHA.108.181388

56. MusunuruK, StrongA, Frank-KamenetskyM, LeeNE, AhfeldtT, et al. (2010) From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466: 714–719 doi:10.1038/nature09266

57. KjolbyM, AndersenOM, BreiderhoffT, FjorbackAW, PedersenKM, et al. (2010) Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab 12: 213–223 doi:10.1016/j.cmet.2010.08.006

58. ShenY, YueF, McClearyDF, YeZ, EdsallL, et al. (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488: 116–120 doi:10.1038/nature11243

59. MostafaviS, RayD, Warde-FarleyD, GrouiosC, MorrisQ (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9 Suppl 1: S4 doi:10.1186/gb-2008-9-s1-s4

60. Stumpf M, Balding DJ, Girolami M (2011) Handbook of Statistical Systems Biology. First ed. West Sussex: John W. Wiley & Sons.

61. GabdoullineR, EckweilerD, KelA, StegmaierP (2012) 3DTF: a web server for predicting transcription factor PWMs using 3D structure-based energy calculations. Nucleic Acids Research 40: W180–W185 doi:10.1093/nar/gks551

62. TsaousiA, MillC, GeorgeSJ (2011) The Wnt pathways in vascular disease: lessons from vascular development. Curr Opin Lipidol 22: 350–357 doi:10.1097/MOL.0b013e32834aa701

63. MermelsteinCS, PortilhoDM, MendesFA, CostaML, AbreuJG (2007) Wnt/beta-catenin pathway activation and myogenic differentiation are induced by cholesterol depletion. Differentiation 75: 184–192 doi:10.1111/j.1432-0436.2006.00129.x

64. KormishJD, SinnerD, ZornAM (2010) Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Dev Dyn 239: 56–68 doi:10.1002/dvdy.22046

65. VlachosIS, KostoulasN, VergoulisT, GeorgakilasG, ReczkoM, et al. (2012) DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Research 40: W498–W504 doi:10.1093/nar/gks494

66. ManiA, RadhakrishnanJ, WangH, ManiA, ManiM-A, et al. (2007) LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315: 1278–1282 doi:10.1126/science.1136370

67. van der HeydenMA, RookMB, HermansMM, RijksenG, BoonstraJ, et al. (1998) Identification of connexin43 as a functional target for Wnt signalling. J Cell Sci 111 (Pt 12) 1741–1749.

68. TodaroGJ, LazarGK, GreenH (1965) The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol 66: 325–333.

69. KothLL, CambierCJ, EllwangerA, SolonM, HouL, et al. (2010) DAP12 is required for macrophage recruitment to the lung in response to cigarette smoke and chemotaxis toward CCL2. J Immunol 184: 6522–6528 doi:10.4049/jimmunol.0901171

70. GoldES, RamseySA, SartainMJ, SelinummiJ, PodolskyI, et al. (2012) ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. J Exp Med 209: 807–817 doi:10.1084/jem.20111202

71. RamseySA, GoldES, AderemA (2010) A systems biology approach to understanding atherosclerosis. EMBO Mol Med 2: 79–89 doi:10.1002/emmm.201000063

72. BrasierAR (2010) The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 86: 211–218 doi:10.1093/cvr/cvq076

73. MallatZ, BesnardS, DuriezM, DeleuzeV, EmmanuelF, et al. (1999) Protective role of interleukin-10 in atherosclerosis. Circ Res 85: e17–e24.

74. VirmaniR, BurkeAP, FarbA, KolodgieFD (2002) Pathology of the unstable plaque. Prog Cardiovasc Dis 44: 349–356.

75. KolodgieFD, NarulaJ, BurkeAP, HaiderN, FarbA, et al. (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157: 1259–1268 doi:10.1016/S0002-9440(10)64641-X

76. LauferEM, WinkensMHM, NarulaJ, HofstraL (2009) Molecular imaging of macrophage cell death for the assessment of plaque vulnerability. Arterioscler Thromb Vasc Biol 29: 1031–1038 doi:10.1161/ATVBAHA.108.165522

77. LiAC, BinderCJ, GutierrezA, BrownKK, PlotkinCR, et al. (2004) Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest 114: 1564–1576 doi:10.1172/JCI18730

78. ThorpE, KuriakoseG, ShahYM, GonzalezFJ, TabasI (2007) Pioglitazone Increases Macrophage apoptosis and plaque necrosis in advanced atherosclerotic lesions of nondiabetic low-density lipoprotein receptor null mice. Circulation 116: 2182–2190 doi:10.1161/CIRCULATIONAHA.107.698852

79. NakayaH, SummersBD, NicholsonAC, GottoAM, HajjarDP, et al. (2009) Atherosclerosis in LDLR-knockout mice is inhibited, but not reversed, by the PPARgamma ligand pioglitazone. Am J Pathol 174: 2007–2014 doi:10.2353/ajpath.2009.080611

80. GongK, ZhouF, HuangH, GongY, ZhangL (2012) Suppression of GSK3β by ERK mediates lipopolysaccharide induced cell migration in macrophage through β-catenin signaling. Protein Cell 3: 762–768 doi:10.1007/s13238-012-2058-x

81. van GilsJM, DerbyMC, FernandesLR, RamkhelawonB, RayTD, et al. (2012) The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat Immunol 13: 136–143 doi:10.1038/ni.2205

82. SarzaniR, SalviF, BordicchiaM, GuerraF, BattistoniI, et al. (2011) Carotid artery atherosclerosis in hypertensive patients with a functional LDL receptor-related protein 6 gene variant. Nutr Metab Cardiovasc Dis 21: 150–156 doi:10.1016/j.numecd.2009.08.004

83. NeumannJ, SchaaleK, FarhatK, EndermannT, UlmerAJ, et al. (2010) Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming Mycobacterium tuberculosis-infected macrophages. FASEB J 24: 4599–4612 doi:10.1096/fj.10-160994

84. MarinouK, ChristodoulidesC, AntoniadesC, KoutsilierisM (2012) Wnt signaling in cardiovascular physiology. Trends Endocrinol Metab 23: 628–636 doi:10.1016/j.tem.2012.06.001

85. TerrandJ, BrubanV, ZhouL, GongW, Asmar ElZ, et al. (2009) LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. J Biochem 284: 381–388 doi:10.1074/jbc.M806538200

86. GoG-W, SrivastavaR, Hernandez-OnoA, GangG, SmithSB, et al. (2014) The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue. Cell Metab 19: 209–220 doi:10.1016/j.cmet.2013.11.023

87. FujinoT, AsabaH, KangM-J, IkedaY, SoneH, et al. (2003) Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci USA 100: 229–234 doi:10.1073/pnas.0133792100

88. HockMB, KralliA (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71: 177–203 doi:10.1146/annurev.physiol.010908.163119

89. IshiiT, ItohK, RuizE, LeakeDS, UnokiH, et al. (2004) Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 94: 609–616 doi:10.1161/01.RES.0000119171.44657.45

90. PuigO, YuanJ, StepaniantsS, ZiebaR, ZycbandE, et al. (2011) A gene expression signature that classifies human atherosclerotic plaque by relative inflammation status. Circ Cardiovasc Genet 4: 595–604 doi:10.1161/CIRCGENETICS.111.960773

91. HsiehP-C, ChiangM-L, ChangJ-C, YanY-T, WangF-F, et al. (2012) DDA3 stabilizes microtubules and suppresses neurite formation. J Cell Sci 125: 3402–3411 doi:10.1242/jcs.099150

92. ZhangL, ShaoH, ZhuT, XiaP, WangZ, et al. (2013) DDA3 associates with microtubule plus ends and orchestrates microtubule dynamics and directional cell migration. Sci Rep 3: 1681 doi:10.1038/srep01681

93. HsiehP-C, ChangJ-C, SunW-T, HsiehS-C, WangM-C, et al. (2007) p53 downstream target DDA3 is a novel microtubule-associated protein that interacts with end-binding protein EB3 and activates beta-catenin pathway. Oncogene 26: 4928–4940 doi:10.1038/sj.onc.1210304

94. NissenSE, TuzcuEM, SchoenhagenP, BrownBG, GanzP, et al. (2004) Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291: 1071–1080 doi:10.1001/jama.291.9.1071

95. ZhaoXQ, BrownBG, HillgerL, SaccoD, BissonB, et al. (1993) Effects of intensive lipid-lowering therapy on the coronary arteries of asymptomatic subjects with elevated apolipoprotein B. Circulation 88: 2744–2753 doi:10.1161/01.CIR.88.6.2744

96. RidkerPM, DanielsonE, FonsecaFAH, GenestJ, GottoAM, et al. (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359: 2195–2207 doi:10.1056/NEJMoa0807646

97. NissenSE, NichollsSJ, SipahiI, LibbyP, RaichlenJS, et al. (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295: 1556–1565 doi:10.1001/jama.295.13.jpc60002

98. ParathathS, GrauerL, HuangL-S, SansonM, DistelE, et al. (2011) Diabetes adversely affects macrophages during atherosclerotic plaque regression in mice. Diabetes 60: 1759–1769 doi:10.2337/db10-0778

99. PfafflMW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.

100. ChoHJ, ShashkinP, GleissnerCA, DunsonD, JainN, et al. (2007) Induction of dendritic cell-like phenotype in macrophages during foam cell formation. Physiol Genomics 29: 149–160 doi:10.1152/physiolgenomics.00051.2006

101. HäggDA, JernasM, WiklundO, ThelleDS, FagerbergB, et al. (2008) Expression profiling of macrophages from subjects with atherosclerosis to identify novel susceptibility genes. Int J Mol Med 21: 697–704.

102. Bolstad BM (2004) Low-level analysis of high-density oligonucleotide array data: background, normalization, and summarization. Ph.D. Thesis, Berkeley: University of California, Berkeley.

103. BenjaminiY, HochbergY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57: 289–300.

104. DaiM, WangP, BoydAD, KostovG, AtheyB, et al. (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33: e175 doi:10.1093/nar/gni179

105. Affymetrix (2006) Identifying and validating alternative splicing events. Affymetrix Technical Note

106. OkoniewskiMJ, MillerCJ (2008) Comprehensive analysis of Affymetrix exon arrays using BioConductor. PLoS Comput Biol 4: e6 doi:10.1371/journal.pcbi.0040006

107. SmythGK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3 doi:10.2202/1544-6115.1027

108. DennisGJ, ShermanBT, HosackDA, YangJ, GaoW, et al. (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4: P3.

109. SubramanianA, TamayoP, MoothaVK, MukherjeeS, EbertBL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550 doi:10.1073/pnas.0506580102

110. LitvakV, RatushnyAV, LampanoAE, SchmitzF, HuangAC, et al. (2012) A FOXO3-IRF7 gene regulatory circuit limits inflammatory sequelae of antiviral responses. Nature doi:10.1038/nature11428

111. Affymetrix (2005) Guide to probe logarithmic intensity error (PLIER) estimation. Affymetrix Technical Note

112. Affymetrix (2005) Exon array background correction. First ed. Affymetrix Whitepaper.

113. DabneyA, StoreyJD (2003) QVALUE: the manual version 1.0. Computer Software User Guide, University of Washington, Department of Biostatistics

114. BreimanL (2001) Random forests. Machine learning 45: 5–32.

115. SiepelA, BejeranoG, PedersenJS, HinrichsAS, HouM, et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034–1050 doi:10.1101/gr.3715005

116. WuH, CaffoB, JaffeeHA, IrizarryRA, FeinbergAP (2010) Redefining CpG islands using hidden Markov models. Biostatistics 11: 499–514 doi:10.1093/biostatistics/kxq005

117. WingenderE, ChenX, HehlR, KarasH, LiebichI, et al. (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28: 316–319.

118. Portales-CasamarE, ThongjueaS, KwonAT, ArenillasD, ZhaoX, et al. (2010) JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res 38: D105–D110 doi:10.1093/nar/gkp950

119. FrithMC, FuY, YuL, ChenJ-F, HansenU, et al. (2004) Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res 32: 1372–1381 doi:10.1093/nar/gkh299

120. NishidaK, FrithMC, NakaiK (2009) Pseudocounts for transcription factor binding sites. Nucleic Acids Research 37: 939–944 doi:10.1093/nar/gkn1019

121. ShannonP, MarkielA, OzierO, BaligaNS, WangJT, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504 doi:10.1101/gr.1239303

122. WuX, WatsonM (2009) CORNA: testing gene lists for regulation by microRNAs. Bioinformatics 25: 832–833 doi:10.1093/bioinformatics/btp059

123. SmedleyD, HaiderS, BallesterB, HollandR, LondonD, et al. (2009) BioMart–biological queries made easy. BMC Genomics 10: 22 doi:10.1186/1471-2164-10-22

124. ReczkoM, MaragkakisM, AlexiouP, GrosseI, HatzigeorgiouAG (2012) Functional microRNA targets in protein coding sequences. Bioinformatics 28: 771–776 doi:10.1093/bioinformatics/bts043

125. RemmM, StormCE, SonnhammerEL (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314: 1041–1052 doi:10.1006/jmbi.2000.5197

126. JohnsonAD, HandsakerRE, PulitSL, NizzariMM, O'DonnellCJ, et al. (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24: 2938–2939 doi:10.1093/bioinformatics/btn564

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#