#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Evolution of Fungal Metabolic Pathways


Fungi are important primary decomposers of organic material as well as amazing chemical engineers, synthesizing a wide variety of natural products, some with potent toxic activities, including antibiotics and mycotoxins. In fungal genomes, the genes involved in these metabolic pathways can be physically linked on chromosomes, forming gene clusters. This extraordinary metabolic diversity is integral to the variety of ecological strategies that fungi employ, but we still know little about the evolutionary processes involved in its generation. To address this question, we analyzed 247,202 enzyme-encoding genes participating in hundreds of metabolic reactions from 208 diverse fungal genomes to examine how two major sources of gene innovation, namely gene duplication and horizontal gene transfer, have contributed to the evolution of clustered and non-clustered metabolic pathways. We discovered that gene duplication is the dominant and consistent driver of metabolic innovation across fungal lineages and metabolic categories; in contrast, horizontal gene transfer appears highly variable both across organisms and functions. The effects of both gene duplication and horizontal gene transfer were more pronounced in clustered genes than in their non-clustered counterparts suggesting that metabolic gene clusters are hotspots for the generation of fungal metabolic diversity.


Vyšlo v časopise: The Evolution of Fungal Metabolic Pathways. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004816
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004816

Souhrn

Fungi are important primary decomposers of organic material as well as amazing chemical engineers, synthesizing a wide variety of natural products, some with potent toxic activities, including antibiotics and mycotoxins. In fungal genomes, the genes involved in these metabolic pathways can be physically linked on chromosomes, forming gene clusters. This extraordinary metabolic diversity is integral to the variety of ecological strategies that fungi employ, but we still know little about the evolutionary processes involved in its generation. To address this question, we analyzed 247,202 enzyme-encoding genes participating in hundreds of metabolic reactions from 208 diverse fungal genomes to examine how two major sources of gene innovation, namely gene duplication and horizontal gene transfer, have contributed to the evolution of clustered and non-clustered metabolic pathways. We discovered that gene duplication is the dominant and consistent driver of metabolic innovation across fungal lineages and metabolic categories; in contrast, horizontal gene transfer appears highly variable both across organisms and functions. The effects of both gene duplication and horizontal gene transfer were more pronounced in clustered genes than in their non-clustered counterparts suggesting that metabolic gene clusters are hotspots for the generation of fungal metabolic diversity.


Zdroje

1. WainwrightM (1988) Metabolic diversity of fungi in relation to growth and mineral cycling in soil - a review. Trans Br Mycol Soc 90: 159–170.

2. BouwsH, WattenbergA, ZornH (2008) Fungal secretomes-nature's toolbox for white biotechnology. Appl Microbiol Biotechnol 80: 381–388 doi:10.1007/s00253-008-1572-5

3. HoffmeisterD, KellerN (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24: 393–416 doi:10.1039/b603084j

4. SchardlCL, YoungCA, HesseU, AmyotteSG, AndreevaK, et al. (2013) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9: e1003323 doi:10.1371/journal.pgen.1003323.s012

5. DufosséL, FouillaudM, CaroY, MapariSA, SutthiwongN (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26C: 56–61 doi:10.1016/j.copbio.2013.09.007

6. KohlhawGB (2003) Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67: 1 doi:10.1128/MMBR.67.1.1-15.2003

7. DemainAL, FangA (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69: 1–39.

8. KellerN, TurnerG, BennettJ (2005) Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 3: 937–947 doi:10.1038/nrmicro1286

9. KooninEV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1: 127–136 doi:10.1038/nrmicro751

10. KanehisaM, ArakiM, GotoS, HattoriM, HirakawaM, et al. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36: D480–D484 doi:10.1093/nar/gkm882

11. GreeneGH, McGaryKL, RokasA, SlotJC (2014) Ecology drives the distribution of specialized tyrosine metabolism modules in fungi. Genome Biol Evol 6: 121–132 doi:10.1093/gbe/evt208

12. HallC, DietrichFS (2007) The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics 177: 2293–2307 doi:10.1534/genetics.107.074963

13. KellerN, HohnT (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21: 17–29.

14. HollandPWH (2013) Evolution of homeobox genes. Wiley Interdiscip Rev Dev Biol 2: 31–45 doi:10.1002/wdev.78

15. IrimiaM, MaesoI, Garcia-FernàndezJ (2008) Convergent evolution of clustering of Iroquois homeobox genes across metazoans. Mol Biol Evol 25: 1521–1525 doi:10.1093/molbev/msn109

16. JargeatP, RekangaltD, VernerM, GayG, DebaudJ, et al. (2003) Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Current Genetics 43: 199–205 doi:10.1007/s00294-003-0387-2

17. WongS, WolfeKH (2005) Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nat Genet 37: 777–782 doi:10.1038/ng1584

18. HittingerCT, RokasA, CarrollSB (2004) Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. Proc Natl Acad Sci U S A 101: 14144–14149 doi:10.1073/pnas.0404319101

19. HullEP, GreenPM, ArstHN, ScazzocchioC (1989) Cloning and physical characterization of the L-proline catabolism gene cluster of Aspergillus nidulans. Mol Microbiol 3: 553–559.

20. BobrowiczP, WysockiR, OwsianikG, GoffeauA, UlaszewskiS (1997) Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 13: 819–828.

21. SubaziniTK, KumarGR (2011) Characterization of Lovastatin biosynthetic cluster proteins in Aspergillus terreus strain ATCC 20542. Bioinformation 6: 250–254.

22. BushleyKE, RajaR, JaiswalP, CumbieJS, NonogakiM, et al. (2013) The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet 9: e1003496 doi:10.1371/journal.pgen.1003496

23. GardinerDM, CozijnsenAJ, WilsonLM, PedrasMSC, HowlettBJ (2004) The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 53: 1307–1318 doi:10.1111/j.1365-2958.2004.04215.x

24. YuJ, ChangPK, EhrlichKC, CaryJW, BhatnagarD, et al. (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70: 1253 doi:10.1128/AEM.70.3.1253-1262.2004

25. TudzynskiP, HölterK, CorreiaT, ArntzC, GrammelN, et al. (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261: 133–141.

26. AhnJ-H, ChengY-Q, WaltonJD (2002) An extended physical map of the TOX2 locus of Cochliobolus carbonum required for biosynthesis of HC-toxin. Fungal Genet Biol 35: 31–38 doi:10.1006/fgbi.2001.1305

27. BrownDW, McCormickSP, AlexanderNJ, ProctorRH, DesjardinsAE (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32: 121–133 doi:10.1006/fgbi.2001.1256

28. SmithDJ, BurnhapMK, BullJH, HodgsonJE, WardJM, et al. (1990) Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. Embo J 9: 741–747.

29. HittingerCT, CarrollSB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449: 677–U1 doi:10.1038/nature06151

30. FloudasD, BinderM, RileyR, BarryK, BlanchetteRA, et al. (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336: 1715–1719 doi:10.1126/science.1221748

31. PowellAJ, ConantGC, BrownDE, CarboneI, DeanRA (2008) Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genomics 9: 147 doi:10.1186/1471-2164-9-147

32. MaL-J, IbrahimAS, SkoryC, GrabherrMG, BurgerG, et al. (2009) Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5: e1000549 doi:10.1371/journal.pgen.1000549

33. KellisM, BirrenBW, LanderES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428: 617–624 doi:10.1038/nature02424

34. WolfeK (2004) Evolutionary genomics: Yeasts accelerate beyond BLAST. Curr Biol 14: R392–R394 doi:10.1016/j.cub.2004.05.015

35. WapinskiI, PfefferA, FriedmanN, RegevA (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449: 54–61 doi:10.1038/nature06107

36. CornellMJ, AlamI, SoanesDM, WongHM, HedelerC, et al. (2007) Comparative genome analysis across a kingdom of eukaryotic organisms: Specialization and diversification in the Fungi. Genome Res 17: 1809–1822 doi:10.1101/gr.6531807

37. HunterAJ, JinB, KellyJM (2011) Independent duplications of alpha-amylase in different strains of Aspergillus oryzae. Fungal Genet Biol 48: 438–444 doi:10.1016/j.fgb.2011.01.006

38. XuJ, SaundersCW, HuP, GrantRA, BoekhoutT, et al. (2007) Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci U S A 104: 18730–18735 doi:10.1073/pnas.0706756104

39. JonesonS, StajichJE, ShiuS-H, RosenblumEB (2011) Genomic transition to pathogenicity in chytrid fungi. PLoS Pathog 7: e1002338 doi:10.1371/journal.ppat.1002338

40. LeagueGP, SlotJC, RokasA (2012) The ASP3 locus in Saccharomyces cerevisiae originated by horizontal gene transfer from Wickerhamomyces. FEMS Yeast Research 12: 859–863 doi:10.1111/j.1567-1364.2012.00828.x

41. HallC, BrachatS, DietrichFS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryotic Cell 4: 1102–1115 doi:10.1128/EC.4.6.1102-1115.2005

42. RichardsTA, SoanesDM, FosterPG, LeonardG, ThomtonCR, et al. (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21: 1897–1911 doi:10.1105/tpc.109.065805

43. Marcet-HoubenM, GabaldonT (2010) Acquisition of prokaryotic genes by fungal genomes. Trends Genet 26: 5–8 doi:10.1016/j.tig.2009.11.007

44. RichardsTA, DacksJB, JenkinsonJM, ThorntonCR, TalbotNJ (2006) Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr Biol 16: 1857–1864 doi:10.1016/j.cub.2006.07.052

45. GardinerDM, McDonaldMC, CovarelliL, SolomonPS, RusuAG, et al. (2012) Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog 8: e1002952 doi:10.1371/journal.ppat.1002952

46. TiburcioRA, Lacerda CostaGG, CarazzolleMF, Costa MondegoJM, SchusterSC, et al. (2010) Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao. J Mol Evol 70: 85–97 doi:10.1007/s00239-009-9311-9

47. FriesenTL, StukenbrockEH, LiuZ, MeinhardtS, LingH, et al. (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38: 953–956 doi:10.1038/ng1839

48. SunB-F, XiaoJ-H, HeS, LiuL, MurphyRW, et al. (2013) Multiple interkingdom horizontal gene transfers in Pyrenophora and closely related species and their contributions to phytopathogenic lifestyles. PLoS ONE 8: e60029 doi:10.1371/journal.pone.0060029

49. Garcia-VallveS, RomeuA, PalauJ (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17: 352–361.

50. NovoM, BigeyF, BeyneE, GaleoteV, GavoryF, et al. (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106: 16333–16338 doi:10.1073/pnas.0904673106

51. KhaldiN, CollemareJ, LebrunM (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9: R18.

52. SlotJC, HibbettDS (2007) Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS ONE 2: e1097 doi:10.1371/journal.pone.0001097

53. SlotJC, RokasA (2010) Multiple GAL pathway gene clusters evolved independently and by different mechanisms in fungi. Proc Natl Acad Sci U S A 107: 10136–10141 doi:10.1073/pnas.0914418107

54. SlotJC, RokasA (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21: 134–139 doi:10.1016/j.cub.2010.12.020

55. CampbellMA, RokasA, SlotJC (2012) Horizontal transfer and death of a fungal secondary metabolic gene cluster. Genome Biol Evol 4: 289–293 doi:10.1093/gbe/evs011

56. CampbellMA, StaatsM, van KanJAL, RokasA, SlotJC (2013) Repeated loss of an anciently horizontally transferred gene cluster in Botrytis. Mycologia 105: 1126–1134 doi:10.3852/12-390

57. PatronNJ, WallerRF, CozijnsenAJ, StraneyDC, GardinerDM, et al. (2007) Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol Biol 7: 174 doi:10.1186/1471-2148-7-174

58. KhaldiN, WolfeKH (2011) Evolutionary origins of the fumonisin secondary metabolite gene cluster in Fusarium verticillioides and Aspergillus niger. Int J Evol Biol 2011: 423821–423827 doi:10.4061/2011/423821

59. DurandD, HalldórssonBV, VernotB (2006) A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol 13: 320–335 doi:10.1089/cmb.2006.13.320

60. StolzerM, LaiH, XuM, SathayeD, VernotB, et al. (2012) Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28: I409–I415 doi:10.1093/bioinformatics/bts386

61. VernotB, StolzerM, GoldmanA, DurandD (2007) Reconciliation with non-binary species trees. Comput Syst Bioinformatics Conf 6: 441–452.

62. WolfeKH, ShieldsDC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713 doi:10.1038/42711

63. ViningLC (1992) Secondary metabolism, inventive evolution and biochemical diversity-a review. Gene 115: 135–140.

64. TrappSC, CroteauRB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158: 811–832.

65. HopwoodDA (1997) Genetic contributions to understanding polyketide synthases. Chemical reviews 97: 2465–2498 doi:10.1021/cr960034i

66. KrokenS, GlassN, TaylorJ, YoderO, TurgeonB (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100: 15670–15675 doi:10.1073/pnas.2532165100

67. BushleyKE, TurgeonBG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10: 26 doi:10.1186/1471-2148-10-26

68. CondonBJ, LengY, WuD, BushleyKE, OhmRA, et al. (2013) Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet 9: e1003233 doi:10.1371/journal.pgen.1003233

69. MaL-J, van der DoesHC, BorkovichKA, ColemanJJ, DaboussiM-J, et al. (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464: 367–373 doi:10.1038/nature08850

70. ColemanJJ, RounsleySD, Rodriguez-CarresM, KuoA, WasmannCC, et al. (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5: e1000618 doi:10.1371/journal.pgen.1000618

71. de JongeR, van EsseHP, MaruthachalamK, BoltonMD, SanthanamP, et al. (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci U S A 109: 5110–5115 doi:10.1073/pnas.1119623109

72. LiangH, PlazonicKR, ChenJ, LiW-H, FernándezA (2008) Protein under-wrapping causes dosage sensitivity and decreases gene duplicability. PLoS Genet 4: e11 doi:10.1371/journal.pgen.0040011

73. SorekR, ZhuY, CreeveyCJ, FrancinoMP, BorkP (2007) Genome-Wide Experimental Determination of Barriers to Horizontal Gene Transfer. Science 318: 1449–1452.

74. PappB, PalC, HurstLD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424: 194–197 doi:10.1038/nature01771

75. LiL, HuangY, XiaX, SunZ (2006) Preferential duplication in the sparse part of yeast protein interaction network. Mol Biol Evol 23: 2467–2473 doi:10.1093/molbev/msl121

76. PrachumwatA, LiW-H (2006) Protein function, connectivity, and duplicability in yeast. Mol Biol Evol 23: 30–39 doi:10.1093/molbev/msi249

77. CohenO, GophnaU, PupkoT (2011) The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol Biol Evol 28: 1481–1489 doi:10.1093/molbev/msq333

78. JainR, RiveraMC, LakeJA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 96: 3801–3806.

79. HurstLD, WilliamsE, PalC (2002) Natural selection promotes the conservation of linkage of co-expressed genes. Trends Genet 18: 604–606.

80. TakosAM, RookF (2012) Why biosynthetic genes for chemical defense compounds cluster. Trends Plant Sci 17: 383–388 doi:10.1016/j.tplants.2012.04.004

81. McGaryKL, SlotJC, RokasA (2013) Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds. Proc Natl Acad Sci U S A 110: 11481–11486 doi:10.1073/pnas.1304461110

82. HittingerCT, GonçalvesP, SampaioJP, DoverJ, JohnstonM, et al. (2010) Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature 464: 54–58 doi:10.1038/nature08791

83. LangGI, BotsteinD (2011) A test of the coordinated expression hypothesis for the origin and maintenance of the GAL cluster in yeast. PLoS ONE 6: e25290 doi:10.1371/journal.pone.0025290

84. WaltonJD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30: 167–171 doi:10.1006/fgbi.2000.1224

85. LawrenceJG, RothJR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143: 1843–1860.

86. KatohK, KumaK, TohH, MiyataT (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33: 511–518 doi:10.1093/nar/gki198

87. Capella-GutierrezS, Silla-MartinezJM, GabaldonT (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973 doi:10.1093/bioinformatics/btp348

88. StamatakisA (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690 doi: 10.1093/bioinformatics/btl446

89. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Available: http://evolution.genetics.washington.edu/phylip.html.

90. PriceMN, DehalPS, ArkinAP (2010) Fasttree 2 - approximately maximum-likelihood trees for large alignments. PLoS ONE 5: e9490 doi:10.1371/journal.pone.0009490

91. ChenK, DurandD, Farach-ColtonM (2000) NOTUNG: A program for dating gene duplications and optimizing gene family trees. J Comput Biol 7: 429–447 doi:10.1089/106652700750050871

92. R Code Team (2014) R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. Available: http://www.R-project.org/.

93. BenjaminiY, HochbergY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc, Series B 57: 289–300.

94. Wickham H (2009) ggplot2: elegant graphics for data analysis. New York: Springer.

95. YamadaT, LetunicI, OkudaS, KanehisaM, BorkP (2011) iPath2.0: interactive pathway explorer. Nucleic Acids Res 39: W412–W415 doi:10.1093/nar/gkr313

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#