#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A ABC Transporter Regulates Lifespan


The drug transporters are often known for their ability to transport different physiological-related compounds across cell membranes. Although the abnormal up-regulation of some these transporters is believed to be the common cause of the clinic problem called drug resistance, the biological functions of these transporters remain largely unknown. Here we show that a Drosophila homolog of the mammalian drug transporter plays a role in lifespan regulation. Mutations of this gene increase the sensitivity to oxidative stress and reduce lifespan, while overexpression of this gene increases resistance to oxidative stress and extends lifespan. By molecular and genetic analyses, we have linked functions of this gene to a key signaling transduction pathway that has been known to be important in lifespan regulation.


Vyšlo v časopise: A ABC Transporter Regulates Lifespan. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004844
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004844

Souhrn

The drug transporters are often known for their ability to transport different physiological-related compounds across cell membranes. Although the abnormal up-regulation of some these transporters is believed to be the common cause of the clinic problem called drug resistance, the biological functions of these transporters remain largely unknown. Here we show that a Drosophila homolog of the mammalian drug transporter plays a role in lifespan regulation. Mutations of this gene increase the sensitivity to oxidative stress and reduce lifespan, while overexpression of this gene increases resistance to oxidative stress and extends lifespan. By molecular and genetic analyses, we have linked functions of this gene to a key signaling transduction pathway that has been known to be important in lifespan regulation.


Zdroje

1. LandisG, ShenJ, TowerJ (2012) Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging 4: 768–789.

2. PletcherSD, LibertS, SkorupaD (2005) Flies and their golden apples: the effect of dietary restriction on Drosophila aging and age-dependent gene expression. Ageing research reviews 4: 451–480.

3. ZouS, MeadowsS, SharpL, JanLY, JanYN (2000) Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 97: 13726–13731.

4. TowerJ (2011) Heat shock proteins and Drosophila aging. Experimental gerontology 46: 355–362.

5. BiteauB, KarpacJ, HwangboD, JasperH (2011) Regulation of Drosophila lifespan by JNK signaling. Experimental gerontology 46: 349–354.

6. WangMC, BohmannD, JasperH (2003) JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Developmental cell 5: 811–816.

7. BorstP, EversR, KoolM, WijnholdsJ (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92: 1295–1302.

8. DeanM (2005) The genetics of ATP-binding cassette transporters. Methods Enzymol 400: 409–429.

9. ToyodaY, HagiyaY, AdachiT, HoshijimaK, KuoMT, et al. (2008) MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 38: 833–862.

10. BorstP, de WolfC, van de WeteringK (2007) Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch 453: 661–673.

11. BelinskyMG, GuoP, LeeK, ZhouF, KotovaE, et al. (2007) Multidrug resistance protein 4 protects bone marrow, thymus, spleen, and intestine from nucleotide analogue-induced damage. Cancer Res 67: 262–268.

12. LeggasM, AdachiM, SchefferGL, SunD, WielingaP, et al. (2004) Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 24: 7612–7621.

13. LinZP, ZhuYL, JohnsonDR, RiceKP, NottoliT, et al. (2008) Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response. Mol Pharmacol 73: 243–251.

14. MennoneA, SorokaCJ, CaiSY, HarryK, AdachiM, et al. (2006) Mrp4−/− mice have an impaired cytoprotective response in obstructive cholestasis. Hepatology 43: 1013–1021.

15. KruhGD, BelinskyMG, GalloJM, LeeK (2007) Physiological and pharmacological functions of Mrp2, Mrp3 and Mrp4 as determined from recent studies on gene-disrupted mice. Cancer Metastasis Rev 26: 5–14.

16. GomiA, ShinodaS, MasuzawaT, IshikawaT, KuoMT (1997) Transient induction of the MRP/GS-X pump and gamma-glutamylcysteine synthetase by 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3- nitrosourea in human glioma cells. Cancer research 57: 5292–5299.

17. GottesmanMM (2003) Cancer gene therapy: an awkward adolescence. Cancer gene therapy 10: 501–508.

18. KuoMT, BaoJ, FuruichiM, YamaneY, GomiA, et al. (1998) Frequent coexpression of MRP/GS-X pump and gamma-glutamylcysteine synthetase mRNA in drug-resistant cells, untreated tumor cells, and normal mouse tissues. Biochemical pharmacology 55: 605–615.

19. YamaneY, FuruichiM, SongR, VanNT, MulcahyRT, et al. (1998) Expression of multidrug resistance protein/GS-X pump and gamma-glutamylcysteine synthetase genes is regulated by oxidative stress. The Journal of biological chemistry 273: 31075–31085.

20. CaiC, OmwanchaJ, HsiehCL, ShemshediniL (2007) Androgen induces expression of the multidrug resistance protein gene MRP4 in prostate cancer cells. Prostate Cancer Prostatic Dis 10: 39–45.

21. GradiloneA, PulcinelliFM, LottiLV, TrifiroE, MartinoS, et al. (2008) Celecoxib upregulates multidrug resistance proteins in colon cancer: lack of synergy with standard chemotherapy. Curr Cancer Drug Targets 8: 414–420.

22. HoLL, KenchJG, HandelsmanDJ, SchefferGL, StrickerPD, et al. (2008) Androgen regulation of multidrug resistance-associated protein 4 (MRP4/ABCC4) in prostate cancer. Prostate 68: 1421–1429.

23. NorrisMD, SmithJ, TanabeK, TobinP, FlemmingC, et al. (2005) Expression of multidrug transporter MRP4/ABCC4 is a marker of poor prognosis in neuroblastoma and confers resistance to irinotecan in vitro. Mol Cancer Ther 4: 547–553.

24. LemosC, KathmannI, GiovannettiE, BelienJA, SchefferGL, et al. (2009) Cellular folate status modulates the expression of BCRP and MRP multidrug transporters in cancer cell lines from different origins. Mol Cancer Ther 8: 655–664.

25. AleksunesLM, SlittAM, CherringtonNJ, ThibodeauMS, KlaassenCD, et al. (2005) Differential expression of mouse hepatic transporter genes in response to acetaminophen and carbon tetrachloride. Toxicological sciences: an official journal of the Society of Toxicology 83: 44–52.

26. AleksunesLM, SlittAL, MaherJM, DieterMZ, KnightTR, et al. (2006) Nuclear factor-E2-related factor 2 expression in liver is critical for induction of NAD(P)H:quinone oxidoreductase 1 during cholestasis. Cell stress & chaperones 11: 356–363.

27. ChenC, KlaassenCD (2004) Rat multidrug resistance protein 4 (Mrp4, Abcc4): molecular cloning, organ distribution, postnatal renal expression, and chemical inducibility. Biochemical and biophysical research communications 317: 46–53.

28. MaherJM, DieterMZ, AleksunesLM, SlittAL, GuoG, et al. (2007) Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology 46: 1597–1610.

29. GuX, ManautouJE (2010) Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug metabolism reviews 42: 482–538.

30. Lin-LeeYC, TatebeS, SavarajN, IshikawaT, Tien KuoM (2001) Differential sensitivities of the MRP gene family and gamma-glutamylcysteine synthetase to prooxidants in human colorectal carcinoma cell lines with different p53 status. Biochemical pharmacology 61: 555–563.

31. HuangH, HaddadGG (2007) Drosophila dMRP4 regulates responsiveness to O2 deprivation and development under hypoxia. Physiol Genomics 29: 260–266.

32. TarnayJN, SzeriF, IliasA, AnniloT, SungC, et al. (2004) The dMRP/CG6214 gene of Drosophila is evolutionarily and functionally related to the human multidrug resistance-associated protein family. Insect Mol Biol 13: 539–548.

33. DeanM, RzhetskyA, AllikmetsR (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11: 1156–1166.

34. HassanHM, FridovichI (1979) Paraquat and Escherichia coli. Mechanism of production of extracellular superoxide radical. The Journal of biological chemistry 254: 10846–10852.

35. SykiotisGP, BohmannD (2008) Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell 14: 76–85.

36. FinkelT, HolbrookNJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247.

37. WestonCR, DavisRJ (2007) The JNK signal transduction pathway. Current opinion in cell biology 19: 142–149.

38. Martin-BlancoE, GampelA, RingJ, VirdeeK, KirovN, et al. (1998) puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes & development 12: 557–570.

39. WeberU, ParicioN, MlodzikM (2000) Jun mediates Frizzled-induced R3/R4 cell fate distinction and planar polarity determination in the Drosophila eye. Development 127: 3619–3629.

40. RomanG, EndoK, ZongL, DavisRL (2001) P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 98: 12602–12607.

41. HotamisligilGS (2006) Inflammation and metabolic disorders. Nature 444: 860–867.

42. BakerKD, ThummelCS (2007) Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell metabolism 6: 257–266.

43. GeorgelP, NaitzaS, KapplerC, FerrandonD, ZacharyD, et al. (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Developmental cell 1: 503–514.

44. HwangboDS, GershmanB, TuMP, PalmerM, TatarM (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429: 562–566.

45. GiannakouME, GossM, JungerMA, HafenE, LeeversSJ, et al. (2004) Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305: 361.

46. HarmanD (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11: 298–300.

47. SohalRS, MockettRJ, OrrWC (2000) Current issues concerning the role of oxidative stress in aging: a perspective. Results Probl Cell Differ 29: 45–66.

48. SohalRS, SohalBH, OrrWC (1995) Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free radical biology & medicine 19: 499–504.

49. JohnsonFB, SinclairDA, GuarenteL (1999) Molecular biology of aging. Cell 96: 291–302.

50. WheelerJC, KingV, TowerJ (1999) Sequence requirements for upregulated expression of Drosophila hsp70 transgenes during aging. Neurobiology of aging 20: 545–553.

51. YangJS, NamHJ, SeoM, HanSK, ChoiY, et al. (2011) OASIS: online application for the survival analysis of lifespan assays performed in aging research. PloS one 6: e23525.

52. WangMC, BohmannD, JasperH (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121: 115–125.

53. MorrowG, BattistiniS, ZhangP, TanguayRM (2004) Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. The Journal of biological chemistry 279: 43382–43385.

54. BiteauB, KarpacJ, SupoyoS, DegennaroM, LehmannR, et al. (2010) Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS genetics 6: e1001159.

55. TatarM, KhazaeliAA, CurtsingerJW (1997) Chaperoning extended life. Nature 390: 30.

56. LeeKS, Iijima-AndoK, IijimaK, LeeWJ, LeeJH, et al. (2009) JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends life span. The Journal of biological chemistry 284: 29454–29461.

57. Cook-WiensE, GrotewielMS (2002) Dissociation between functional senescence and oxidative stress resistance in Drosophila. Experimental gerontology 37: 1347–1357.

58. GarganoJW, MartinI, BhandariP, GrotewielMS (2005) Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Experimental gerontology 40: 386–395.

59. KarpacJ, Hull-ThompsonJ, FalleurM, JasperH (2009) JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging cell 8: 288–295.

60. OhSW, MukhopadhyayA, SvrzikapaN, JiangF, DavisRJ, et al. (2005) JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proceedings of the National Academy of Sciences of the United States of America 102: 4494–4499.

61. SonnichsenB, KoskiLB, WalshA, MarschallP, NeumannB, et al. (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434: 462–469.

62. KamathRS, FraserAG, DongY, PoulinG, DurbinR, et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231–237.

63. ReaSL, WuD, CypserJR, VaupelJW, JohnsonTE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nature genetics 37: 894–898.

64. WalkerGA, WhiteTM, McCollG, JenkinsNL, BabichS, et al. (2001) Heat shock protein accumulation is upregulated in a long-lived mutant of Caenorhabditis elegans. The journals of gerontology Series A, Biological sciences and medical sciences 56: B281–287.

65. YangJ, TowerJ (2009) Expression of hsp22 and hsp70 transgenes is partially predictive of drosophila survival under normal and stress conditions. The journals of gerontology Series A, Biological sciences and medical sciences 64: 828–838.

66. TerryDF, WyszynskiDF, NolanVG, AtzmonG, SchoenhofenEA, et al. (2006) Serum heat shock protein 70 level as a biomarker of exceptional longevity. Mechanisms of ageing and development 127: 862–868.

67. ZhengJ, MutchersonR2nd, HelfandSL (2005) Calorie restriction delays lipid oxidative damage in Drosophila melanogaster. Aging cell 4: 209–216.

68. ZhengX, YangZ, YueZ, AlvarezJD, SehgalA (2007) FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America 104: 15899–15904.

69. GiannakouME, PartridgeL (2004) The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends in cell biology 14: 408–412.

70. KrautR, MenonK, ZinnK (2001) A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila. Current biology: CB 11: 417–430.

71. FordD, HoeN, LandisGN, TozerK, LuuA, et al. (2007) Alteration of Drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone. Experimental gerontology 42: 483–497.

72. RahmanMM, SykiotisGP, NishimuraM, BodmerR, BohmannD (2013) Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes. Aging cell 12: 554–562.

73. KuoTH, FedinaTY, HansenI, DreisewerdK, DierickHA, et al. (2012) Insulin signaling mediates sexual attractiveness in Drosophila. PLoS genetics 8: e1002684.

74. PoirierL, ShaneA, ZhengJ, SeroudeL (2008) Characterization of the Drosophila gene-switch system in aging studies: a cautionary tale. Aging cell 7: 758–770.

75. KlionskyDJ, AbdallaFC, AbeliovichH, AbrahamRT, Acevedo-ArozenaA, et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8: 445–544.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#