#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Transcriptional Frameshifting Rescues Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted Gene


Nonstandard decoding mechanisms lead to the synthesis of different protein variants from a single DNA sequence. These mechanisms are particularly important when the genome length has to be limited such as viral genomes, limited by the available space in the capsid, or to synthesize two different polypeptides that have distinct functional properties. Here, we report that tssM, a gene encoded within the Citrobacter rodentium Type VI secretion (T6S) gene cluster, is interrupted by a premature stop codon; however, the stop codon is preceded by a slippery site constituted by 11 consecutive adenosines. Reiterative transcription leads to the incorporation of additional nucleotides in the mRNA and therefore restores the original framing. As a consequence, two different TssM variants are created by transcriptional frameshifting, including a full-length 130-kDa protein and an 88-kDa truncated variant. We further show that both forms, and the ratio between these two forms, are required for the function of the transport apparatus. Interestingly, a similar mechanism regulates the synthesis of two TssM variants in Yersinia pseudotuberculosis.


Vyšlo v časopise: Transcriptional Frameshifting Rescues Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted Gene. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004869
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004869

Souhrn

Nonstandard decoding mechanisms lead to the synthesis of different protein variants from a single DNA sequence. These mechanisms are particularly important when the genome length has to be limited such as viral genomes, limited by the available space in the capsid, or to synthesize two different polypeptides that have distinct functional properties. Here, we report that tssM, a gene encoded within the Citrobacter rodentium Type VI secretion (T6S) gene cluster, is interrupted by a premature stop codon; however, the stop codon is preceded by a slippery site constituted by 11 consecutive adenosines. Reiterative transcription leads to the incorporation of additional nucleotides in the mRNA and therefore restores the original framing. As a consequence, two different TssM variants are created by transcriptional frameshifting, including a full-length 130-kDa protein and an 88-kDa truncated variant. We further show that both forms, and the ratio between these two forms, are required for the function of the transport apparatus. Interestingly, a similar mechanism regulates the synthesis of two TssM variants in Yersinia pseudotuberculosis.


Zdroje

1. BoyerF, FichantG, BerthodJ, VandenbrouckY, AttreeI (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10: 104.

2. CoulthurstSJ (2013) The Type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol 164: 640–54.

3. HoBT, DongTG, MekalanosJJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15: 9–21.

4. ZouedA, BrunetYR, DurandE, AschtgenMS, LoggerL, et al. (2014) Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta 1843: 1664–73.

5. DurandE, CambillauC, CascalesE, JournetL (2014) VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol 22: 498–507.

6. PukatzkiS, MaAT, RevelAT, SturtevantD, MekalanosJJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104: 15508–15513.

7. MaAT, McAuleyS, PukatzkiS, MekalanosJJ (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5: 234–43.

8. DurandE, DerrezE, AudolyG, SpinelliS, Ortiz-LombardiaM, et al. (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae Type VI secretion system. J Biol Chem 287: 38190–9.

9. KapiteinN, MogkA (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol 16: 52–8.

10. RussellAB, PetersonSB, MougousJD (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12: 137–48.

11. BenzJ, MeinhartA (2014) Antibacterial effector/immunity systems: it's just the tip of the iceberg. Curr Opin Microbiol 17: 1–10.

12. FuY, WaldorMK, MekalanosJJ (2013) Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14: 652–63.

13. MaLS, HachaniA, LinJS, FillouxA, LaiEM (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16: 94–104.

14. RussellAB, HoodRD, BuiNK, LerouxM, VollmerW, et al. (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475: 343–7.

15. RussellAB, LeRouxM, HathaziK, AgnelloDM, IshikawaT, et al. (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496: 508–12.

16. LeimanPG, BaslerM, RamagopalUA, BonannoJB, SauderJM, et al. (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106: 4154–4159.

17. CascalesE, CambillauC (2012) Structural biology of type VI secretion systems. Philos Trans R Soc Lond B Biol Sci 367: 1102–11.

18. BaslerM, PilhoferM, HendersonGP, JensenGJ, MekalanosJJ (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483: 182–6.

19. BallisterER, LaiAH, ZuckermannRN, ChengY, MougousJD (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci USA 105: 3733–8.

20. PellLG, KanelisV, DonaldsonLW, HowellPL, DavidsonAR (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 106: 4160–4165.

21. BrunetYR, HéninJ, CeliaH, CascalesE (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 15: 315–21.

22. KubeS, KapiteinN, ZimniakT, HerzogF, MogkA, et al. (2014) Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 8: 20–30.

23. LeRouxM, De LeonJA, KuwadaNJ, RussellAB, Pinto-SantiniD, et al. (2012) Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc Natl Acad Sci USA 109: 19804–9.

24. BaslerM, HoBT, MekalanosJJ (2013) Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152: 884–94.

25. BrunetYR, EspinosaL, HarchouniS, MignotT, CascalesE (2013) Imaging Type VI secretion-mediated bacterial killing. Cell Rep 3: 36–41.

26. AschtgenMS, GavioliM, DessenA, LloubesR, CascalesE (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol 75: 886–899.

27. AschtgenMS, BernardCS, de BentzmannS, LloubesR, CascalesE (2008) SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli.. J Bacteriol 190: 7523–7531.

28. MaLS, LinJS, LaiEM (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 191: 4316–29.

29. Felisberto-RodriguesC, DurandE, AschtgenMS, BlangyS, Ortiz-LombardiaM, et al. (2011) Towards a structural comprehension of bacterial Type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathogens 7: e1002386.

30. GueguenE, CascalesE (2013) Promoter swapping unveils the role of the Citrobacter rodentium CTS1 Type VI secretion system in interbacterial competition. Appl Environ Microbiol 79: 32–8.

31. PettyNK, BulginR, CrepinVF, Cerdeño-TárragaAM, SchroederGN, et al. (2010) The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J Bacteriol 192: 525–38.

32. WagnerLA, WeissRB, DriscollR, DunnDS, GestelandRF (1990) Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli.. Nucleic Acids Res 18: 3529–35.

33. SharmaV, FirthAE, AntonovI, FayetO, AtkinsJF, et al. (2011) A pilot study of bacterial genes with disrupted ORFs reveals a surprising profusion of protein sequence recoding mediated by ribosomal frameshifting and transcriptional realignment. Mol Biol Evol 28: 3195–211.

34. BaranovPV, HammerAW, ZhouJ, GestelandRF, AtkinsJF (2005) Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol 6: R25.

35. BaranovPV, FayetO, HendrixRW, AtkinsJF (2006) Recoding in bacteriophages and bacterial IS elements. Trends Genet 22: 174–81.

36. KeeganLP, GalloA, O'ConnellMA (2001) The many roles of an RNA editor. Nat Rev Genet 2: 869–78.

37. LarsenB, WillsNM, NelsonC, AtkinsJF, GestelandRF (2000) Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. Proc Natl Acad Sci USA 97: 1683–8.

38. SchurigH, BeaucampN, OstendorpR, JaenickeR, AdlerE, et al. (1995) Phosphoglycerate kinase and triosephosphate isomerase from the hyperthermophilic bacterium Thermotoga maritima form a covalent bifunctional enzyme complex. EMBO J 14: 442–51.

39. LintonMF, RaabeM, PierottiV, YoungSG (1997) Reading-frame restoration by transcriptional slippage at long stretches of adenine residues in mammalian cells. J Biol Chem 272: 14127–32.

40. TamasI, WernegreenJJ, NystedtB, KauppinenSN, DarbyAC, et al. (2008) Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. Proc Natl Acad Sci USA 105: 14934–9.

41. WernegreenJJ, KauppinenSN, DegnanPH (2010) Slip into something more functional: selection maintains ancient frameshifts in homopolymeric sequences. Mol Biol Evol 27: 833–9.

42. LevinME, HendrixRW, CasjensSR (1993) A programmed translational frameshift is required for the synthesis of a bacteriophage lambda tail assembly protein. J Mol Biol 234: 124–39.

43. XuJ, HendrixRW, DudaRL (2004) Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16: 11–21.

44. LarsenB, GestelandRF, AtkinsJF (1997) Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%. J Mol Biol 271: 47–60.

45. PennoC, SansonettiP, ParsotC (2005) Frameshifting by transcriptional slippage is involved in production of MxiE, the transcription activator regulated by the activity of the type III secretion apparatus in Shigella flexneri. Mol Microbiol 56: 204–14.

46. PennoC, HachaniA, BiskriL, SansonettiP, AllaouiA, et al. (2006) Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri. Mol Microbiol 62: 1460–8.

47. ParksAR, CourtC, LubkowskaL, JinDJ, KashlevM, et al. (2014) Bacteriophage λ N protein inhibits transcription slippage by Escherichia coli RNA polymerase. Nucleic Acids Res 42: 5823–9.

48. XuJ, HendrixRW, DudaRL (2013) A balanced ratio of proteins from gene G and frameshift-extended gene GT is required for phage lambda tail assembly. J Mol Biol 425: 3476–87.

49. EppingerM, RosovitzMJ, FrickeWF, RaskoDA, KokorinaG, et al. (2007) The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet 3: e142.

50. FerrièresL, HémeryG, NhamT, GuéroutAM, MazelD, et al. (2010) Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J Bacteriol 192: 6418–27.

51. GueguenE, DurandE, ZhangXY, d'AmalricQ, JournetL, et al. (2013) Expression of a Yersinia pseudotuberculosis Type VI secretion system is responsive to envelope stresses through the OmpR transcriptional activator. PLoS One 8: e66615.

52. van den EntF, LoweJ (2006) RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Meth 67: 67–74.

53. ZaslaverA, BrenA, RonenM, ItzkovitzS, KikoinI, et al. (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3: 623–8.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#