#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Occupancy of Mitochondrial Single-Stranded DNA Binding Protein Supports the Strand Displacement Mode of DNA Replication


Mitochondria are cytoplasmatic organelles that produce most of the adenosine triphosphate (ATP) used by the cell as a source of chemical energy. A subset of proteins required for ATP production is encoded by a distinct mitochondrial DNA genome (mtDNA). Proper maintenance of mtDNA is essential, since mutations or depletion of this circular molecule may lead to a number of different diseases and also contribute to normal ageing. We are interested in the molecular mechanisms that ensure correct replication and propagation of mtDNA. Even if many of the responsible enzymes have been identified, there is still a debate within our scientific field regarding the exact mode of mtDNA replication. We have here used a combination of in vitro biochemistry and in vivo protein-DNA interaction characterization to address this question. Our findings demonstrate that the mitochondrial single-stranded DNA-binding protein (mtSSB) restricts initiation of mtDNA replication to a specific origin of replication. By characterizing how mtSSB interacts with the two strands of mtDNA in vivo, we are able to directly demonstrate the relevance of one proposed mode of mitochondrial DNA replication and at the same time seriously question the validity of other, alternative modes that have been proposed over the years.


Vyšlo v časopise: Occupancy of Mitochondrial Single-Stranded DNA Binding Protein Supports the Strand Displacement Mode of DNA Replication. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004832
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004832

Souhrn

Mitochondria are cytoplasmatic organelles that produce most of the adenosine triphosphate (ATP) used by the cell as a source of chemical energy. A subset of proteins required for ATP production is encoded by a distinct mitochondrial DNA genome (mtDNA). Proper maintenance of mtDNA is essential, since mutations or depletion of this circular molecule may lead to a number of different diseases and also contribute to normal ageing. We are interested in the molecular mechanisms that ensure correct replication and propagation of mtDNA. Even if many of the responsible enzymes have been identified, there is still a debate within our scientific field regarding the exact mode of mtDNA replication. We have here used a combination of in vitro biochemistry and in vivo protein-DNA interaction characterization to address this question. Our findings demonstrate that the mitochondrial single-stranded DNA-binding protein (mtSSB) restricts initiation of mtDNA replication to a specific origin of replication. By characterizing how mtSSB interacts with the two strands of mtDNA in vivo, we are able to directly demonstrate the relevance of one proposed mode of mitochondrial DNA replication and at the same time seriously question the validity of other, alternative modes that have been proposed over the years.


Zdroje

1. ParkCB, LarssonNG (2011) Mitochondrial DNA mutations in disease and aging. J Cell Biol 193: 809–818.

2. KukatC, LarssonNG (2013) mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol 23: 457–463.

3. SpelbrinkJN, LiFY, TirantiV, NikaliK, YuanQP, et al. (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28: 223–231.

4. BogenhagenDF (2012) Mitochondrial DNA nucleoid structure. Biochim Biophys Acta 1819: 914–920.

5. XuB, ClaytonDA (1995) A persistent RNA-DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence. Mol Cell Biol 15: 580–589.

6. FusteJM, WanrooijS, JemtE, GranycomeCE, CluettTJ, et al. (2010) Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol Cell 37: 67–78.

7. CerritelliSM, FrolovaEG, FengC, GrinbergA, LovePE, et al. (2003) Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Molecular cell 11: 807–815.

8. TirantiV, RocchiM, DiDonatoS, ZevianiM (1993) Cloning of human and rat cDNAs encoding the mitochondrial single-stranded DNA-binding protein (SSB). Gene 126: 219–225.

9. YangC, CurthU, UrbankeC, KangC (1997) Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 A resolution. Nat Struct Biol 4: 153–157.

10. GenuarioR, WongTW (1993) Stimulation of DNA polymerase gamma by a mitochondrial single-strand DNA binding protein. Cell Mol Biol Res 39: 625–634.

11. ThommesP, FarrCL, MartonRF, KaguniLS, CotterillS (1995) Mitochondrial single-stranded DNA-binding protein from Drosophila embryos. Physical and biochemical characterization. J Biol Chem 270: 21137–21143.

12. FarrCL, WangY, KaguniLS (1999) Functional interactions of mitochondrial DNA polymerase and single-stranded DNA-binding protein. Template-primer DNA binding and initiation and elongation of DNA strand synthesis. J Biol Chem 274: 14779–14785.

13. KorhonenJA, GaspariM, FalkenbergM (2003) TWINKLE Has 5' -> 3' DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278: 48627–48632.

14. RobbersonDL, ClaytonDA (1972) Replication of mitochondrial DNA in mouse L cells and their thymidine kinase - derivatives: displacement replication on a covalently-closed circular template. Proc Natl Acad Sci U S A 69: 3810–3814.

15. BogenhagenDF, ClaytonDA (2003) The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28: 357–360.

16. WanrooijS, FusteJM, FargeG, ShiY, GustafssonCM, et al. (2008) Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc Natl Acad Sci U S A 105: 11122–11127.

17. WanrooijS, Miralles FusteJ, StewartJB, WanrooijPH, SamuelssonT, et al. (2012) In vivo mutagenesis reveals that OriL is essential for mitochondrial DNA replication. EMBO Rep 13: 1130–1137.

18. FaithJJ, PollockDD (2003) Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes. Genetics 165: 735–745.

19. HoltIJ, LorimerHE, JacobsHT (2000) Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 100: 515–524.

20. YasukawaT, YangMY, JacobsHT, HoltIJ (2005) A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol Cell 18: 651–662.

21. ReyesA, KazakL, WoodSR, YasukawaT, JacobsHT, et al. (2013) Mitochondrial DNA replication proceeds via a 'bootlace' mechanism involving the incorporation of processed transcripts. Nucleic Acids Res 41: 5837–5850.

22. Holt IJ, Reyes A (2012) Human mitochondrial DNA replication. Cold Spring Harb Perspect Biol 4: pii: a012971

23. TakamatsuC, UmedaS, OhsatoT, OhnoT, AbeY, et al. (2002) Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein. EMBO Rep 3: 451–456.

24. CurthU, UrbankeC, GreipelJ, GerberdingH, TirantiV, et al. (1994) Single-stranded-DNA-binding proteins from human mitochondria and Escherichia coli have analogous physicochemical properties. Eur J Biochem 221: 435–443.

25. KorhonenJA, PhamXH, PellegriniM, FalkenbergM (2004) Reconstitution of a minimal mtDNA replisome in vitro. EMBO J 23: 2423–2429.

26. WangYE, MarinovGK, WoldBJ, ChanDC (2013) Genome-wide analysis reveals coating of the mitochondrial genome by TFAM. PloS one 8: e74513.

27. RuhanenH, BorrieS, SzabadkaiG, TyynismaaH, JonesAW, et al. (2010) Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation. Biochim Biophys Acta 1803: 931–939.

28. AsakawaS, KumazawaY, ArakiT, HimenoH, MiuraK, et al. (1991) Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J Mol Evol 32: 511–520.

29. YangMY, BowmakerM, ReyesA, VerganiL, AngeliP, et al. (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111: 495–505.

30. BrownTA, CecconiC, TkachukAN, BustamanteC, ClaytonDA (2005) Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev 19: 2466–2476.

31. ReyesA, YasukawaT, HoltIJ (2007) Analysis of replicating mitochondrial DNA by two-dimensional agarose gel electrophoresis. Methods Mol Biol 372: 219–232.

32. RobbersonDL, KasamatsuH, VinogradJ (1972) Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc Natl Acad Sci U S A 69: 737–741.

33. ClaytonDA (1982) Replication of animal mitochondrial DNA. Cell 28: 693–705.

34. RajalaN, GerholdJM, MartinssonP, KlymovA, SpelbrinkJN (2014) Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication. Nucleic Acids Res 42: 952–967.

35. MaierD, FarrCL, PoeckB, AlahariA, VogelM, et al. (2001) Mitochondrial single-stranded DNA-binding protein is required for mitochondrial DNA replication and development in Drosophila melanogaster. Mol Biol Cell 12: 821–830.

36. Van TuyleGC, PavcoPA (1985) The rat liver mitochondrial DNA-protein complex: displaced single strands of replicative intermediates are protein coated. The Journal of cell biology 100: 251–257.

37. GaspariM, FalkenbergM, LarssonNG, GustafssonCM (2004) The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J 23: 4606–4614.

38. HolsteinEM, LydallD (2012) Quantitative amplification of single-stranded DNA. Methods Mol Biol 920: 323–339.

39. KukatC, WurmCA, SpahrH, FalkenbergM, LarssonNG, et al. (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108: 13534–13539.

40. BrewerBJ, FangmanWL (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51: 463–471.

41. BrewerBJ, FangmanWL (1988) A replication fork barrier at the 3' end of yeast ribosomal RNA genes. Cell 55: 637–643.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#