Activates Both IL-1β and IL-1 Receptor Antagonist to Modulate Lung Inflammation during Pneumonic Plague
Inhalation of respiratory droplets containing Yersinia pestis results in a rapidly developing and lethal pneumonia. Interestingly, early interactions between Y. pestis and host cells in the lung contribute to significant immune evasion, but also ultimately result in severe innate immune activation. Our results demonstrate that Y. pestis activates pro-inflammatory cytokines IL-1β and IL-18 in the lung early during infection. However, there is very little early pulmonary inflammation while Y. pestis continues to multiply in the lung compartment. We show that the host protein IL-1RA is activated concurrently with IL-1β, attenuating early immune activation by this cytokine. We propose that this allows the organism to replicate to high titers, eventually triggering a vigorous inflammatory response and facilitating aerosol transmission. Therefore, evaluating early host activation of IL-1RA by Y. pestis may provide therapeutic targets against pneumonic plague.
Vyšlo v časopise:
Activates Both IL-1β and IL-1 Receptor Antagonist to Modulate Lung Inflammation during Pneumonic Plague. PLoS Pathog 11(3): e32767. doi:10.1371/journal.ppat.1004688
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004688
Souhrn
Inhalation of respiratory droplets containing Yersinia pestis results in a rapidly developing and lethal pneumonia. Interestingly, early interactions between Y. pestis and host cells in the lung contribute to significant immune evasion, but also ultimately result in severe innate immune activation. Our results demonstrate that Y. pestis activates pro-inflammatory cytokines IL-1β and IL-18 in the lung early during infection. However, there is very little early pulmonary inflammation while Y. pestis continues to multiply in the lung compartment. We show that the host protein IL-1RA is activated concurrently with IL-1β, attenuating early immune activation by this cytokine. We propose that this allows the organism to replicate to high titers, eventually triggering a vigorous inflammatory response and facilitating aerosol transmission. Therefore, evaluating early host activation of IL-1RA by Y. pestis may provide therapeutic targets against pneumonic plague.
Zdroje
1. Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, et al. (2010) A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7: 376–387. doi: 10.1016/j.chom.2010.04.009 20478539
2. Davis BK, Roberts RA, Huang MT, Willingham SB, Conti BJ, et al. (2011) Cutting edge: NLRC5-dependent activation of the inflammasome. Journal of immunology 186: 1333–1337. doi: 10.4049/jimmunol.1003111 21191067
3. Latz E (2010) The inflammasomes: mechanisms of activation and function. Current opinion in immunology 22: 28–33. doi: 10.1016/j.coi.2009.12.004 20060699
4. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, et al. (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107: 3076–3080. doi: 10.1073/pnas.0913087107 20133635
5. Vladimer GI, Weng D, Paquette SW, Vanaja SK, Rathinam VA, et al. (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37: 96–107. doi: 10.1016/j.immuni.2012.07.006 22840842
6. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, et al. (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477: 596–600. doi: 10.1038/nature10510 21918512
7. Zheng Y, Lilo S, Brodsky IE, Zhang Y, Medzhitov R, et al. (2011) A Yersinia effector with enhanced inhibitory activity on the NF-kappaB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages. PLoS pathogens 7: e1002026. doi: 10.1371/journal.ppat.1002026 21533069
8. Bubeck SS, Cantwell AM, Dube PH (2007) Delayed inflammatory response to primary pneumonic plague occurs in both outbred and inbred mice. Infection and immunity 75: 697–705. 17101642
9. Lathem WW, Crosby SD, Miller VL, Goldman WE (2005) Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci USA 102: 17786–17791. 16306265
10. Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clinical microbiology reviews 10: 35–66. 8993858
11. LaRock CN, Cookson BT (2012) The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell host & microbe 12: 799–805.
12. Cantwell AM, Bubeck SS, Dube PH (2010) YopH inhibits early pro-inflammatory cytokine responses during plague pneumonia. BMC immunology 11: 29. doi: 10.1186/1471-2172-11-29 20565713
13. Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS pathogens 3: e161. 17983266
14. Lathem WW, Price PA, Miller VL, Goldman WE (2007) A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science 315: 509–513. 17255510
15. Lilo S, Zheng Y, Bliska JB (2008) Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ. Infect Immun 76: 3911–3923. doi: 10.1128/IAI.01695-07 18559430
16. Cohen TS, Prince AS (2013) Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J Clin Invest 123: 1630–1637. doi: 10.1172/JCI66142 23478406
17. Pechous RD, Sivaraman V, Price PA, Stasulli NM, Goldman WE (2013) Early host cell targets of Yersinia pestis during primary pneumonic plague. PLoS pathogens 9: e1003679. doi: 10.1371/journal.ppat.1003679 24098126
18. Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, et al. (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. The Journal of experimental medicine 204: 3235–3245. 18070936
19. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, et al. (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature immunology 11: 1136–1142. doi: 10.1038/ni.1960 21057511
20. Cai S, Batra S, Wakamatsu N, Pacher P, Jeyaseelan S (2012) NLRC4 inflammasome-mediated production of IL-1beta modulates mucosal immunity in the lung against gram-negative bacterial infection. Journal of immunology 188: 5623–5635. doi: 10.4049/jimmunol.1200195 22547706
21. Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, et al. (2010) Caspase-1 independent IL-1beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 184: 3326–3330. doi: 10.4049/jimmunol.0904189 20200276
22. Shenderov K, Riteau N, Yip R, Mayer-Barber KD, Oland S, et al. (2014) Cutting edge: Endoplasmic reticulum stress licenses macrophages to produce mature IL-1beta in response to TLR4 stimulation through a caspase-8- and TRIF-dependent pathway. J Immunol 192: 2029–2033. doi: 10.4049/jimmunol.1302549 24489101
23. Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, et al. (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nature immunology 7: 1066–1073. 16980981
24. Zahedi KA, Uhlar CM, Rits M, Prada AE, Whitehead AS (1994) The mouse interleukin 1 receptor antagonist protein: gene structure and regulation in vitro. Cytokine 6: 1–9. 8003626
25. Dinarello CA, Novick D, Kim S, Kaplanski G (2013) Interleukin-18 and IL-18 binding protein. Front Immunol 4: 289. doi: 10.3389/fimmu.2013.00289 24115947
26. Spinner JL, Winfree S, Starr T, Shannon JG, Nair V, et al. (2014) Yersinia pestis survival and replication within human neutrophil phagosomes and uptake of infected neutrophils by macrophages. J Leukoc Biol 95: 389–398. doi: 10.1189/jlb.1112551 24227798
27. Jordan M, Otterness IG, Ng R, Gessner A, Rollinghoff M, et al. (1995) Neutralization of endogenous IL-6 suppresses induction of IL-1 receptor antagonist. J Immunol 154: 4081–4090. 7706746
28. Comer JE, Sturdevant DE, Carmody AB, Virtaneva K, Gardner D, et al. (2010) Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague. Infect Immun 78: 5086–5098. doi: 10.1128/IAI.00256-10 20876291
29. Standiford LR, Standiford TJ, Newstead MJ, Zeng X, Ballinger MN, et al. (2012) TLR4-dependent GM-CSF protects against lung injury in Gram-negative bacterial pneumonia. American journal of physiology Lung cellular and molecular physiology 302: L447–454. doi: 10.1152/ajplung.00415.2010 22160309
30. Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, et al. (2009) NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and-independent pathways. Journal of immunology 183: 2008–2015.
31. Kim S, Bauernfeind F, Ablasser A, Hartmann G, Fitzgerald KA, et al. (2010) Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. European journal of immunology 40: 1545–1551. doi: 10.1002/eji.201040425 20333626
32. Jessen DL, Osei-Owusu P, Toosky M, Roughead W, Bradley DS, et al. (2014) Type III secretion needle proteins induce cell signaling and cytokine secretion via Toll-like receptors. Infect Immun 82: 2300–2309. doi: 10.1128/IAI.01705-14 24643544
33. Holgate ST (2012) Innate and adaptive immune responses in asthma. Nature medicine 18: 673–683. doi: 10.1038/nm.2731 22561831
34. Mao XQ, Kawai M, Yamashita T, Enomoto T, Dake Y, et al. (2000) Imbalance production between interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1Ra) in bronchial asthma. Biochemical and biophysical research communications 276: 607–612. 11027520
35. Frank JA, Pittet JF, Wray C, Matthay MA (2008) Protection from experimental ventilator-induced acute lung injury by IL-1 receptor blockade. Thorax 63: 147–153. 17901159
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 3
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Bacterial Immune Evasion through Manipulation of Host Inhibitory Immune Signaling
- Antimicrobial-Induced DNA Damage and Genomic Instability in Microbial Pathogens
- BILBO1 Is a Scaffold Protein of the Flagellar Pocket Collar in the Pathogen
- Is Antigenic Sin Always “Original?” Re-examining the Evidence Regarding Circulation of a Human H1 Influenza Virus Immediately Prior to the 1918 Spanish Flu