#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Adenovirus Entry From the Apical Surface of Polarized Epithelia Is Facilitated by the Host Innate Immune Response


Respiratory viral infection is one of the leading causes of morbidity and mortality worldwide. Interventions that are able to limit viral infection will enhance human health and productivity. However, the mechanisms that control our susceptibility to viral infection and the factors that allow viral pathogens to breach the exterior epithelial barrier to initiate infection are not well understood. Here we find that adenovirus, a common cold virus and a potential gene therapy vector, uses a cellular receptor that is induced by the host innate immune response. Moreover, neutrophils, cells that are meant to protect the host in the early phase of an innate immune response, instead facilitate adenovirus infection. It has been known for over 15 years that adenovirus itself can induce an innate immune response and specifically induce host cell secretion of IL-8, a critical chemokine that attracts neutrophils to sites of infection. However, until now, it has been unclear how IL-8 induction might benefit the virus. Our data indicate that adenovirus evolved to use our innate defense system to enhance entry into the epithelium and identifies the apical adenovirus receptor as a new target that may modulate inflammatory disease.


Vyšlo v časopise: Adenovirus Entry From the Apical Surface of Polarized Epithelia Is Facilitated by the Host Innate Immune Response. PLoS Pathog 11(3): e32767. doi:10.1371/journal.ppat.1004696
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004696

Souhrn

Respiratory viral infection is one of the leading causes of morbidity and mortality worldwide. Interventions that are able to limit viral infection will enhance human health and productivity. However, the mechanisms that control our susceptibility to viral infection and the factors that allow viral pathogens to breach the exterior epithelial barrier to initiate infection are not well understood. Here we find that adenovirus, a common cold virus and a potential gene therapy vector, uses a cellular receptor that is induced by the host innate immune response. Moreover, neutrophils, cells that are meant to protect the host in the early phase of an innate immune response, instead facilitate adenovirus infection. It has been known for over 15 years that adenovirus itself can induce an innate immune response and specifically induce host cell secretion of IL-8, a critical chemokine that attracts neutrophils to sites of infection. However, until now, it has been unclear how IL-8 induction might benefit the virus. Our data indicate that adenovirus evolved to use our innate defense system to enhance entry into the epithelium and identifies the apical adenovirus receptor as a new target that may modulate inflammatory disease.


Zdroje

1. Berk A (2007) Adenoviridae: The Viruses and Their Replication; Howley DKaP, editor. Philadelphia: Lippincott Williams and Wilkins.

2. Lynch JP 3rd, Fishbein M, Echavarria M (2011) Adenovirus. Semin Respir Crit Care Med 32: 494–511. doi: 10.1055/s-0031-1283287 21858752

3. Tebruegge M, Curtis N (2012) Adenovirus: an overview for pediatric infectious diseases specialists. Pediatr Infect Dis J 31: 626–627. doi: 10.1097/INF.0b013e318250b066 22592487

4. Frickmann H, Jungblut S, Hirche TO, Gross U, Kuhns M, et al. (2012) Spectrum of viral infections in patients with cystic fibrosis. Eur J Microbiol Immunol (Bp) 2: 161–175. doi: 10.1556/EuJMI.2.2012.3.1 24688762

5. Gern JE, Pappas T, Visness CM, Jaffee KF, Lemanske RF, et al. (2012) Comparison of the etiology of viral respiratory illnesses in inner-city and suburban infants. J Infect Dis 206: 1342–1349. doi: 10.1093/infdis/jis504 23014674

6. Hayashi S, Hogg JC (2007) Adenovirus infections and lung disease. Curr Opin Pharmacol 7: 237–243. 17446135

7. Schaller M, Hogaboam CM, Lukacs N, Kunkel SL (2006) Respiratory viral infections drive chemokine expression and exacerbate the asthmatic response. J Allergy Clin Immunol 118: 295–302; quiz 303–294. 16890750

8. Robinson CM, Singh G, Lee JY, Dehghan S, Rajaiya J, et al. (2013) Molecular evolution of human adenoviruses. Sci Rep 3: 1812. doi: 10.1038/srep01812 23657240

9. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, et al. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275: 1320–1323. 9036860

10. Carson SD, Chapman NN, Tracy SM (1997) Purification of the putative coxsackievirus B receptor from HeLa cells. Biochem Biophys Res Commun 233: 325–328. 9144533

11. Tomko RP, Xu R, Philipson L (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A 94: 3352–3356. 9096397

12. Wolfrum N, Greber UF (2013) Adenovirus signalling in entry. Cell Microbiol 15: 53–62. doi: 10.1111/cmi.12053 23083122

13. Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, et al. (2002) Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 110: 789–799. 12297051

14. Excoffon KJ, Gansemer ND, Mobily ME, Karp PH, Parekh KR, et al. (2010) Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia. PLoS One 5: e9909. doi: 10.1371/journal.pone.0009909 20361046

15. Kolawole AO, Sharma P, Yan R, Lewis KJ, Xu Z, et al. (2012) The PDZ1 and PDZ3 domains of MAGI-1 regulate the eight-exon isoform of the coxsackievirus and adenovirus receptor. J Virol 86: 9244–9254. doi: 10.1128/JVI.01138-12 22718816

16. Sharma P, Kolawole AO, Core SB, Kajon AE, Excoffon KJ (2012) Sidestream smoke exposure increases the susceptibility of airway epithelia to adenoviral infection. PLoS One 7: e49930. doi: 10.1371/journal.pone.0049930 23166798

17. Lutschg V, Boucke K, Hemmi S, Greber UF (2011) Chemotactic antiviral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells. Nat Commun 2: 391. doi: 10.1038/ncomms1391 21750545

18. Gregory SM, Nazir SA, Metcalf JP (2011) Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol 6: 357–374. 21738557

19. Zen K, Liu Y, McCall IC, Wu T, Lee W, et al. (2005) Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils. Mol Biol Cell 16: 2694–2703. 15800062

20. Malka R, Wolach B, Gavrieli R, Shochat E, Rom-Kedar V (2012) Evidence for bistable bacteria-neutrophil interaction and its clinical implications. J Clin Invest 122: 3002–3011. doi: 10.1172/JCI59832 22820292

21. Carvajal-Gonzalez JM, Gravotta D, Mattera R, Diaz F, Perez Bay A, et al. (2012) Basolateral sorting of the coxsackie and adenovirus receptor through interaction of a canonical YXXPhi motif with the clathrin adaptors AP-1A and AP-1B. Proc Natl Acad Sci U S A 109: 3820–3825. doi: 10.1073/pnas.1117949109 22343291

22. Diaz F, Gravotta D, Deora A, Schreiner R, Schoggins J, et al. (2009) Clathrin adaptor AP1B controls adenovirus infectivity of epithelial cells. Proc Natl Acad Sci U S A 106: 11143–11148. doi: 10.1073/pnas.0811227106 19549835

23. Mattila PE, Kinlough CL, Bruns JR, Weisz OA, Hughey RP (2009) MUC1 traverses apical recycling endosomes along the biosynthetic pathway in polarized MDCK cells. Biol Chem 390: 551–556. doi: 10.1515/BC.2009.088 19453277

24. Kirby I, Davison E, Beavil AJ, Soh CP, Wickham TJ, et al. (2000) Identification of contact residues and definition of the CAR-binding site of adenovirus type 5 fiber protein. J Virol 74: 2804–2813. 10684297

25. van Raaij MJ, Chouin E, van der Zandt H, Bergelson JM, Cusack S (2000) Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. Structure 8: 1147–1155. 11080637

26. Verdino P, Witherden DA, Havran WL, Wilson IA (2010) The molecular interaction of CAR and JAML recruits the central cell signal transducer PI3K. Science 329: 1210–1214. doi: 10.1126/science.1187996 20813955

27. Wang H, Li ZY, Liu Y, Persson J, Beyer I, et al. (2011) Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 17: 96–104. doi: 10.1038/nm.2270 21151137

28. MacManus CF, Pettigrew J, Seaton A, Wilson C, Maxwell PJ, et al. (2007) Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells. Mol Cancer Res 5: 737–748. 17606477

29. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, et al. (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009–1013. 11715022

30. Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124: 119–131. 16413486

31. Coyne CB, Vanhook MK, Gambling TM, Carson JL, Boucher RC, et al. (2002) Regulation of airway tight junctions by proinflammatory cytokines. Mol Biol Cell 13: 3218–3234. 12221127

32. Li E, Brown SL, Stupack DG, Puente XS, Cheresh DA, et al. (2001) Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 75: 5405–5409. 11333925

33. Meier O, Greber UF (2004) Adenovirus endocytosis. J Gene Med 6 Suppl 1: S152–163. 14978758

34. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73: 309–319. 8477447

35. Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, et al. (1999) Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 274: 10219–10226. 10187807

36. Tharp WG, Yadav R, Irimia D, Upadhyaya A, Samadani A, et al. (2006) Neutrophil chemorepulsion in defined interleukin-8 gradients in vitro and in vivo. J Leukoc Biol. pp. 539–554.

37. Sabroe I, Williams TJ, Hebert CA, Collins PD (1997) Chemoattractant cross-desensitization of the human neutrophil IL-8 receptor involves receptor internalization and differential receptor subtype regulation. J Immunol 158: 1361–1369. 9013980

38. Sumagin R, Robin AZ, Nusrat A, Parkos CA (2014) Transmigrated neutrophils in the intestinal lumen engage ICAM-1 to regulate the epithelial barrier and neutrophil recruitment. Mucosal Immunol 7: 905–915. doi: 10.1038/mi.2013.106 24345805

39. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, et al. (1989) A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56: 849–853. 2538244

40. Keicho N, Elliott WM, Hogg JC, Hayashi S (1997) Adenovirus E1A upregulates interleukin-8 expression induced by endotoxin in pulmonary epithelial cells. Am J Physiol 272: L1046–1052. 9227502

41. Kuhns DB, Young HA, Gallin EK, Gallin JI (1998) Ca2+-dependent production and release of IL-8 in human neutrophils. J Immunol 161: 4332–4339. 9780210

42. Magnuson B, Ekim B, Fingar DC (2012) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 441: 1–21. doi: 10.1042/BJ20110892 22168436

43. Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD (2006) S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell 24: 185–197. 17052453

44. Sharma P, Kolawole AO, Wiltshire SM, Frondorf K, Excoffon KJ (2012) Accessibility of the coxsackievirus and adenovirus receptor and its importance in adenovirus gene transduction efficiency. J Gen Virol 93: 155–158. doi: 10.1099/vir.0.036269-0 21918008

45. Liu X, Ory V, Chapman S, Yuan H, Albanese C, et al. (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol 180: 599–607. doi: 10.1016/j.ajpath.2011.10.036 22189618

46. Karp PH, Moninger TO, Weber SP, Nesselhauf TS, Launspach JL, et al. (2002) An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol Biol 188: 115–137. 11987537

47. Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75: 477–486. 8221887

48. English D, Andersen BR (1974) Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J Immunol Methods 5: 249–252. 4427075

49. Brazil JC, Lee WY, Kolegraff KN, Nusrat A, Parkos CA, et al. (2010) Neutrophil migration across intestinal epithelium: evidence for a role of CD44 in regulating detachment of migrating cells from the luminal surface. J Immunol 185: 7026–7036. doi: 10.4049/jimmunol.1001293 20974992

50. Louis NA, Hamilton KE, Kong T, Colgan SP (2005) HIF-dependent induction of apical CD55 coordinates epithelial clearance of neutrophils. FASEB J 19: 950–959. 15923405

51. Kidney JC, Proud D (2000) Neutrophil transmigration across human airway epithelial monolayers: mechanisms and dependence on electrical resistance. Am J Respir Cell Mol Biol 23: 389–395. 10970831

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#