#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Low Doses of Imatinib Induce Myelopoiesis and Enhance Host Anti-microbial Immunity


Host-directed therapeutics (HDTs) for infectious diseases target cellular mechanisms used by pathogens to move into, through, or out of cells. The Abl tyrosine kinase (TK) inhibitor and cancer therapeutic imatinib mesylate (Gleevec), for example, has activity against bacterial and viral pathogens via effects on pathogen entry (polyomaviruses), intracellular transit (Mycobacteria) and exit (poxviruses and filoviruses). Other HDTs target the host immune system by suppressing or activating circulating innate and adaptive cells. Here we report that imatinib at doses that are effective in clearing Mycobacterial infections but which are 10-fold lower than those used for cancer, mimics a physiological innate response to infection in the bone marrow, called the “emergency response,” in which hematopoietic stem cells and multipotent progenitors expand and differentiate into mature myeloid cells that migrate to peripheral sites. Imatinib effects occur in part via partial inhibition of c-Kit, suggesting a mechanism by which c-Kit controls the earliest stages of hematopoiesis. Mimicking a physiological antimicrobial response may make imatinib broadly useful. Accordingly, imatinib also has efficacy against infections caused by Franciscella spp., which do not use imatinib-sensitive TKs for pathogenesis. These observations identify myelopoiesis as an important target for HDTs, and provide information on how to dose imatinib for clinical use.


Vyšlo v časopise: Low Doses of Imatinib Induce Myelopoiesis and Enhance Host Anti-microbial Immunity. PLoS Pathog 11(3): e32767. doi:10.1371/journal.ppat.1004770
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004770

Souhrn

Host-directed therapeutics (HDTs) for infectious diseases target cellular mechanisms used by pathogens to move into, through, or out of cells. The Abl tyrosine kinase (TK) inhibitor and cancer therapeutic imatinib mesylate (Gleevec), for example, has activity against bacterial and viral pathogens via effects on pathogen entry (polyomaviruses), intracellular transit (Mycobacteria) and exit (poxviruses and filoviruses). Other HDTs target the host immune system by suppressing or activating circulating innate and adaptive cells. Here we report that imatinib at doses that are effective in clearing Mycobacterial infections but which are 10-fold lower than those used for cancer, mimics a physiological innate response to infection in the bone marrow, called the “emergency response,” in which hematopoietic stem cells and multipotent progenitors expand and differentiate into mature myeloid cells that migrate to peripheral sites. Imatinib effects occur in part via partial inhibition of c-Kit, suggesting a mechanism by which c-Kit controls the earliest stages of hematopoiesis. Mimicking a physiological antimicrobial response may make imatinib broadly useful. Accordingly, imatinib also has efficacy against infections caused by Franciscella spp., which do not use imatinib-sensitive TKs for pathogenesis. These observations identify myelopoiesis as an important target for HDTs, and provide information on how to dose imatinib for clinical use.


Zdroje

1. Bradley WD, Koleske AJ (2009) Regulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts. J Cell Sci 122: 3441–3454. doi: 10.1242/jcs.039859 19759284

2. Hantschel O, Superti-Furga G (2004) Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 5: 33–44. 14708008

3. Koretzky GA (2007) The legacy of the Philadelphia chromosome. J Clin Invest 117: 2030–2032. 17671635

4. Evans DB, Traxler P, Garcia-Echeverria C (2000) Molecular approaches to receptors as targets for drug discovery. Exs 89: 123–139. 10997286

5. Garcia-Echeverria C, Traxler P, Evans DB (2000) ATP site-directed competitive and irreversible inhibitors of protein kinases. Med Res Rev 20: 28–57. 10608920

6. Kantarjian H, O'Brien S, Jabbour E, Garcia-Manero G, Quintas-Cardama A, et al. (2012) Improved survival in chronic myeloid leukemia since the introduction of imatinib therapy: a single-institution historical experience. Blood 119: 1981–1987. doi: 10.1182/blood-2011-08-358135 22228624

7. Kantarjian HM, Shah NP, Cortes JE, Baccarani M, Agarwal MB, et al. (2012) Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood 119: 1123–1129. doi: 10.1182/blood-2011-08-376087 22160483

8. Goldman JM, Druker BJ (2001) Chronic myeloid leukemia: current treatment options. Blood 98: 2039–2042. 11567987

9. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, et al. (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121: 396–409. doi: 10.1172/JCI35721 21157039

10. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, et al. (1996) Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56: 100–104. 8548747

11. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, et al. (1997) CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 90: 4947–4952. 9389713

12. Dewar AL, Cambareri AC, Zannettino AC, Miller BL, Doherty KV, et al. (2005) Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood 105: 3127–3132. 15637141

13. Melnick JS, Janes J, Kim S, Chang JY, Sipes DG, et al. (2006) An efficient rapid system for profiling the cellular activities of molecular libraries. Proc Natl Acad Sci U S A 103: 3153–3158. 16492761

14. Krauss GL, Bar M, Biton V, Klapper JA, Rektor I, et al. (2012) Tolerability and safety of perampanel: two randomized dose-escalation studies. Acta Neurol Scand 125: 8–15. doi: 10.1111/j.1600-0404.2011.01588.x 21883097

15. Lebeis SL, Kalman D (2009) Aligning antimicrobial drug discovery with complex and redundant host-pathogen interactions. Cell Host Microbe 5: 114–122. doi: 10.1016/j.chom.2009.01.008 19218083

16. Swimm A, Bommarius B, Li Y, Cheng D, Reeves P, et al. (2004) Enteropathogenic Escherichia coli use redundant tyrosine kinases to form actin pedestals. Mol Biol Cell 15: 3520–3529. 15155808

17. Pielage JF, Powell KR, Kalman D, Engel JN (2008) RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization. PLoS Pathog 4: e1000031. doi: 10.1371/journal.ppat.1000031 18369477

18. Ly KT, Casanova JE (2008) Abelson Tyrosine Kinase Facilitates Salmonella enterica serovar Typhimurium Entry into Epithelial Cells. Infect Immun.

19. Burton EA, Plattner R, Pendergast AM (2003) Abl tyrosine kinases are required for infection by Shigella flexneri. Embo J 22: 5471–5479. 14532119

20. Tammer I, Brandt S, Hartig R, Konig W, Backert S (2007) Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology 132: 1309–1319. 17408661

21. Lin M, den Dulk-Ras A, Hooykaas PJ, Rikihisa Y (2007) Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell Microbiol 9: 2644–2657. 17587335

22. Elwell CA, Ceesay A, Kim JH, Kalman D, Engel JN (2008) RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog 4: e1000021. doi: 10.1371/journal.ppat.1000021 18369471

23. Garcia M, Cooper A, Shi W, Bornmann W, Carrion R, et al. (2012) Productive replication of Ebola virus is regulated by the c-Abl1 tyrosine kinase. Sci Transl Med 4: 123ra124.

24. Harmon B, Campbell N, Ratner L (2010) Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLoS Pathog 6: e1000956. doi: 10.1371/journal.ppat.1000956 20585556

25. Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124: 119–131. 16413486

26. Hirsch AJ, Medigeshi GR, Meyers HL, DeFilippis V, Fruh K, et al. (2005) The Src family kinase c-Yes is required for maturation of West Nile virus particles. J Virol 79: 11943–11951. 16140770

27. Prakash O, Swamy OR, Peng X, Tang ZY, Li L, et al. (2005) Activation of Src kinase Lyn by the Kaposi sarcoma-associated herpesvirus K1 protein: implications for lymphomagenesis. Blood 105: 3987–3994. 15665117

28. Swimm AI, Bornmann W, Jiang M, Imperiale MJ, Lukacher AE, et al. (2010) Abl family tyrosine kinases regulate sialylated ganglioside receptors for polyomavirus. J Virol 84: 4243–4251. doi: 10.1128/JVI.00129-10 20181697

29. Wetzel DM, McMahon-Pratt D, Koleske AJ (2012) The Abl and Arg kinases mediate distinct modes of phagocytosis and are required for maximal Leishmania infection. Mol Cell Biol 32: 3176–3186. doi: 10.1128/MCB.00086-12 22665498

30. Napier RJ, Rafi W, Cheruvu M, Powell KR, Zaunbrecher MA, et al. (2011) Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10: 475–485. doi: 10.1016/j.chom.2011.09.010 22100163

31. Reeves PM, Bommarius B, Lebeis S, McNulty S, Christensen J, et al. (2005) Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat Med 11: 731–739. 15980865

32. Reeves PM, Smith SK, Olson VA, Thorne SH, Bornmann W, et al. (2011) Variola and monkeypox viruses utilize conserved mechanisms of virion motility and release that depend on abl and SRC family tyrosine kinases. J Virol 85: 21–31. doi: 10.1128/JVI.01814-10 20962097

33. Bruns H, Stegelmann F, Fabri M, Dohner K, van Zandbergen G, et al. (2012) Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. J Immunol 189: 4069–4078. doi: 10.4049/jimmunol.1201538 22988030

34. Sinai P, Berg RE, Haynie JM, Egorin MJ, Ilaria RL Jr., et al. (2007) Imatinib mesylate inhibits antigen-specific memory CD8 T cell responses in vivo. J Immunol 178: 2028–2037. 17277106

35. Borg C, Terme M, Taieb J, Menard C, Flament C, et al. (2004) Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 114: 379–388. 15286804

36. Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, et al. (2011) Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med 17: 1094–1100. doi: 10.1038/nm.2438 21873989

37. Menon-Andersen D, Mondick JT, Jayaraman B, Thompson PA, Blaney SM, et al. (2009) Population pharmacokinetics of imatinib mesylate and its metabolite in children and young adults. Cancer Chemother Pharmacol 63: 229–238. doi: 10.1007/s00280-008-0730-x 18398615

38. Larson RA, Druker BJ, Guilhot F, O'Brien SG, Riviere GJ, et al. (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111: 4022–4028. doi: 10.1182/blood-2007-10-116475 18256322

39. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6: 93–106. 16491134

40. Wilson A, Oser GM, Jaworski M, Blanco-Bose WE, Laurenti E, et al. (2007) Dormant and self-renewing hematopoietic stem cells and their niches. Ann N Y Acad Sci 1106: 64–75. 17442778

41. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, et al. (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135: 1118–1129. doi: 10.1016/j.cell.2008.10.048 19062086

42. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, et al. (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121: 295–306. 15851035

43. Gorgens A, Radtke S, Mollmann M, Cross M, Durig J, et al. (2013) Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep 3: 1539–1552. doi: 10.1016/j.celrep.2013.04.025 23707063

44. Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y, et al. (1992) In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80: 3044–3050. 1281687

45. Harrison DE, Jordan CT, Zhong RK, Astle CM (1993) Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol 21: 206–219. 8425559

46. Bartolovic K, Balabanov S, Hartmann U, Komor M, Boehmler AM, et al. (2004) Inhibitory effect of imatinib on normal progenitor cells in vitro. Blood 103: 523–529. 12969987

47. Ogawa M, Nishikawa S, Yoshinaga K, Hayashi S, Kunisada T, et al. (1993) Expression and function of c-Kit in fetal hemopoietic progenitor cells: transition from the early c-Kit-independent to the late c-Kit-dependent wave of hemopoiesis in the murine embryo. Development 117: 1089–1098. 7686845

48. Eash KJ, Greenbaum AM, Gopalan PK, Link DC (2010) CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 120: 2423–2431. doi: 10.1172/JCI41649 20516641

49. Suratt BT, Petty JM, Young SK, Malcolm KC, Lieber JG, et al. (2004) Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 104: 565–571. 15054039

50. Eash KJ, Means JM, White DW, Link DC (2009) CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113: 4711–4719. doi: 10.1182/blood-2008-09-177287 19264920

51. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13: 159–175. doi: 10.1038/nri3399 23435331

52. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG (2010) Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2: 216–227. doi: 10.1159/000284367 20375550

53. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9: 231–241. 18073771

54. Blomgran RaE J. (2011) Lung Neutrophils Facilitate Activation of Naive Antigen-Specific CD4 + T Cells during Mycobacterium tuberculosis Infection. Journal of Immunology doi: 10.4049/jimmunol.1100001 23264931

55. Elkins KL, Rhinehart-Jones TR, Culkin SJ, Yee D, Winegar RK (1996) Minimal requirements for murine resistance to infection with Francisella tularensis LVS. Infect Immun 64: 3288–3293. 8757866

56. Conlan JW (1997) Critical roles of neutrophils in host defense against experimental systemic infections of mice by Listeria monocytogenes, Salmonella typhimurium, and Yersinia enterocolitica. Infect Immun 65: 630–635. 9009323

57. Sjostedt A, Conlan JW, North RJ (1994) Neutrophils are critical for host defense against primary infection with the facultative intracellular bacterium Francisella tularensis in mice and participate in defense against reinfection. Infect Immun 62: 2779–2783. 8005668

58. Orlic D, Fischer R, Nishikawa S, Nienhuis AW, Bodine DM (1993) Purification and characterization of heterogeneous pluripotent hematopoietic stem cell populations expressing high levels of c-kit receptor. Blood 82: 762–770. 7687891

59. Bodine DM, Seidel NE, Zsebo KM, Orlic D (1993) In vivo administration of stem cell factor to mice increases the absolute number of pluripotent hematopoietic stem cells. Blood 82: 445–455. 7687160

60. Thoren LA, Liuba K, Bryder D, Nygren JM, Jensen CT, et al. (2008) Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol 180: 2045–2053. 18250409

61. Shin JY, Hu W, Naramura M, Park CY (2014) High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J Exp Med 211: 217–231. doi: 10.1084/jem.20131128 24446491

62. Levesque JP, Hendy J, Winkler IG, Takamatsu Y, Simmons PJ (2003) Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 31: 109–117. 12591275

63. Nigrovic PA, Gray DH, Jones T, Hallgren J, Kuo FC, et al. (2008) Genetic inversion in mast cell-deficient (Wsh) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy. Am J Pathol 173: 1693–1701. doi: 10.2353/ajpath.2008.080407 18988802

64. Boitano AE, de Lichtervelde L, Snead JL, Cooke MP, Schultz PG (2012) An image-based screen identifies a small molecule regulator of megakaryopoiesis. Proc Natl Acad Sci U S A 109: 14019–14023. doi: 10.1073/pnas.1212545109 22891346

65. Panopoulos AD, Watowich SS (2008) Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine 42: 277–288. doi: 10.1016/j.cyto.2008.03.002 18400509

66. Druker BJ (2003) Imatinib alone and in combination for chronic myeloid leukemia. Semin Hematol 40: 50–58. 12783376

67. Cohen PR (2007) Sweet's syndrome—a comprehensive review of an acute febrile neutrophilic dermatosis. Orphanet J Rare Dis 2: 34. 17655751

68. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, et al. (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037. 11287972

69. Carulli G (1997) Effects of recombinant human granulocyte colony-stimulating factor administration on neutrophil phenotype and functions. Haematologica 82: 606–616. 9407734

70. Gabrilove JL, Jakubowski A, Scher H, Sternberg C, Wong G, et al. (1988) Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N Engl J Med 318: 1414–1422. 2452983

71. Greenbaum AM, Link DC (2011) Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 25: 211–217. doi: 10.1038/leu.2010.248 21079612

72. Crawford J, Ozer H, Stoller R, Johnson D, Lyman G, et al. (1991) Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med 325: 164–170. 1711156

73. Gopinath S, Hotson A, Johns J, Nolan G, Monack D (2013) The systemic immune state of super-shedder mice is characterized by a unique neutrophil-dependent blunting of TH1 responses. PLoS Pathog 9: e1003408. doi: 10.1371/journal.ppat.1003408 23754944

74. Held SA, Duchardt KM, Tenzer S, Ruckrich T, von Schwarzenberg K, et al. (2012) Imatinib mesylate and nilotinib affect MHC-class I presentation by modulating the proteasomal processing of antigenic peptides. Cancer Immunol Immunother.

75. Sato N, Narita M, Takahashi M, Yagisawa K, Liu A, et al. (2003) The effects of STI571 on antigen presentation of dendritic cells generated from patients with chronic myelogenous leukemia. Hematol Oncol 21: 67–75. 12802811

76. Napier RJ, Shinnick TM, Kalman D (2012) Back to the future: host-targeted chemotherapeutics for drug-resistant TB. Future Microbiol 7: 431–435. doi: 10.2217/fmb.12.19 22439718

77. Hawn TR, Shah JA, Kalman D (2015) New tricks for old dogs: countering antibiotic resistance in tuberculosis with host-directed therapeutics. Immunol Rev 264: 344–362. doi: 10.1111/imr.12255 25703571

78. Tan BH, Meinken C, Bastian M, Bruns H, Legaspi A, et al. (2006) Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J Immunol 177: 1864–1871. 16849498

79. Mehra S, Foreman T, Didier P, Ahsan M, Hudock T, et al. (2015) The DosR regulon modulates adaptive immunity and is essential for Mycobacterium tuberculosis persistence. Am J Resp Crit Care Med (in press).

80. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, et al. (2014) Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511: 99–103. doi: 10.1038/nature13489 24990750

81. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, et al. (2005) TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202: 1715–1724. 16365150

82. Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW, et al. (2012) Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148: 434–446. doi: 10.1016/j.cell.2011.12.023 22304914

83. Tobin DM, Ramakrishnan L (2013) TB: the Yin and Yang of lipid mediators. Curr Opin Pharmacol 13: 641–645. doi: 10.1016/j.coph.2013.06.007 23849093

84. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25: 101–137. 17090225

85. Nandi B, Behar SM (2011) Regulation of neutrophils by interferon-gamma limits lung inflammation during tuberculosis infection. J Exp Med 208: 2251–2262. doi: 10.1084/jem.20110919 21967766

86. Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, et al. (2006) Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 116: 916–928. 16543948

87. Thom SR, Yang M, Bhopale VM, Huang S, Milovanova TN (2011) Microparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries. J Appl Physiol (1985) 110: 340–351. doi: 10.1152/japplphysiol.00811.2010 20966192

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#