Bacterial Immune Evasion through Manipulation of Host Inhibitory Immune Signaling
article has not abstract
Vyšlo v časopise:
Bacterial Immune Evasion through Manipulation of Host Inhibitory Immune Signaling. PLoS Pathog 11(3): e32767. doi:10.1371/journal.ppat.1004644
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004644
Souhrn
article has not abstract
Zdroje
1. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420: 885–891. 12490963
2. Zhu Y, Yao S, Chen L (2011) Cell surface signaling molecules in the control of immune responses: a tide model. Immunity 34: 466–478. doi: 10.1016/j.immuni.2011.04.008 21511182
3. Lu R, Pan H, Shively JE (2012) CEACAM1 negatively regulates IL-1β production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex. PLoS Pathog 8: e1002597. doi: 10.1371/journal.ppat.1002597 22496641
4. Chang Y-C, Olson J, Beasley FC, Tung C, Zhang J, et al. (2014) Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog 10: e1003846. doi: 10.1371/journal.ppat.1003846 24391502
5. Nakayama M, Kurokawa K, Nakamura K, Lee BL, Sekimizu K, et al. (2012) Inhibitory receptor paired Ig-like receptor B is exploited by Staphylococcus aureus for virulence. J Immunol Baltim Md 1950 189: 5903–5911. doi: 10.4049/jimmunol.1201940 23152562
6. Choi HW, Brooking-Dixon R, Neupane S, Lee C- J, Miao EA, et al. (2013) Salmonella typhimurium impedes innate immunity with a mast-cell-suppressing protein tyrosine phosphatase, SptP. Immunity 39: 1108–1120. doi: 10.1016/j.immuni.2013.11.009 24332031
7. Rolán HG, Durand EA, Mecsas J (2013) Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host Microbe 14: 306–317. doi: 10.1016/j.chom.2013.08.013 24034616
8. Wang Y-C, Chen C-L, Sheu B-S, Yang Y-J, Tseng P-C, et al. (2014) Helicobacter pylori Infection Activates Src Homology-2 Domain-Containing Phosphatase 2 To Suppress IFN-γ Signaling. J Immunol Baltim Md 1950 193: 4149–4158. doi: 10.4049/jimmunol.1400594 25225672
9. Vivier E, Daëron M (1997) Immunoreceptor tyrosine-based inhibition motifs. Immunol Today 18: 286–291. 9190115
10. Slevogt H, Zabel S, Opitz B, Hocke A, Eitel J, et al. (2008) CEACAM1 inhibits Toll-like receptor 2-triggered antibacterial responses of human pulmonary epithelial cells. Nat Immunol 9: 1270–1278. doi: 10.1038/ni.1661 18836450
11. Nakayama M, Underhill DM, Petersen TW, Li B, Kitamura T, et al. (2007) Paired Ig-like receptors bind to bacteria and shape TLR-mediated cytokine production. J Immunol Baltim Md 1950 178: 4250–4259. 17371981
12. Carlin AF, Uchiyama S, Chang Y-C, Lewis AL, Nizet V, et al. (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113: 3333–3336. doi: 10.1182/blood-2008-11-187302 19196661
13. Carlin AF, Chang Y-C, Areschoug T, Lindahl G, Hurtado-Ziola N, et al. (2009) Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med 206: 1691–1699. doi: 10.1084/jem.20090691 19596804
14. Ali SR, Fong JJ, Carlin AF, Busch TD, Linden R, et al. (2014) Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med 211: 1231–1242. doi: 10.1084/jem.20131853 24799499
15. Wang L, Gordon RA, Huynh L, Su X, Park Min K H, et al. (2010) Indirect inhibition of Toll-like receptor and type I interferon responses by ITAM-coupled receptors and integrins. Immunity 32: 518–530. doi: 10.1016/j.immuni.2010.03.014 20362473
16. Pinheiro da Silva F, Aloulou M, Benhamou M, Monteiro RC (2008) Inhibitory ITAMs: a matter of life and death. Trends Immunol 29: 366–373. doi: 10.1016/j.it.2008.05.001 18602341
17. Pinheiro da Silva F, Aloulou M, Skurnik D, Benhamou M, Andremont A, et al. (2007) CD16 promotes Escherichia coli sepsis through an FcR gamma inhibitory pathway that prevents phagocytosis and facilitates inflammation. Nat Med 13: 1368–1374. 17934470
18. Yan D, Wang X, Luo L, Cao X, Ge B (2012) Inhibition of TLR signaling by a bacterial protein containing immunoreceptor tyrosine-based inhibitory motifs. Nat Immunol 13: 1063–1071. doi: 10.1038/ni.2417 23001144
19. Yan D, Quan H, Wang L, Liu F, Liu H, et al. (2013) Enteropathogenic Escherichia coli Tir recruits cellular SHP-2 through ITIM motifs to suppress host immune response. Cell Signal 25: 1887–1894. doi: 10.1016/j.cellsig.2013.05.020 23707390
20. Bauer B, Pang E, Holland C, Kessler M, Bartfeld S, et al. (2012) The Helicobacter pylori virulence effector CagA abrogates human β-defensin 3 expression via inactivation of EGFR signaling. Cell Host Microbe 11: 576–586. doi: 10.1016/j.chom.2012.04.013 22704618
21. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, et al. (2002) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295: 683–686. 11743164
22. Barrow AD, Trowsdale J (2006) You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol 36: 1646–1653. 16783855
23. Kaniga K, Uralil J, Bliska JB, Galán JE (1996) A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol Microbiol 21: 633–641. 8866485
24. LaRock CN, Cookson BT (2012) The Yersinia Virulence Effector YopM Binds Caspase-1 to Arrest Inflammasome Assembly and Processing. Cell Host Microbe 12: 799–805. doi: 10.1016/j.chom.2012.10.020 23245324
25. Ye Z, Gorman AA, Uittenbogaard AM, Myers-Morales T, Kaplan AM, et al. (2014) Caspase-3 Mediates the Pathogenic Effect of Yersinia pestis YopM in Liver of C57BL/6 Mice and Contributes to YopM’s Function in Spleen. PLoS ONE 9: e110956. doi: 10.1371/journal.pone.0110956 25372388
26. Daëron M, Latour S, Malbec O, Espinosa E, Pina P, et al. (1995) The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 3: 635–646. 7584153
27. Doody GM, Justement LB, Delibrias CC, Matthews RJ, Lin J, et al. (1995) A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269: 242–244. 7618087
28. Staub E, Rosenthal A, Hinzmann B (2004) Systematic identification of immunoreceptor tyrosine-based inhibitory motifs in the human proteome. Cell Signal 16: 435–456. 14709333
29. Daëron M, Jaeger S, Du Pasquier L, Vivier E (2008) Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol Rev 224: 11–43. doi: 10.1111/j.1600-065X.2008.00666.x 18759918
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 3
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Bacterial Immune Evasion through Manipulation of Host Inhibitory Immune Signaling
- Antimicrobial-Induced DNA Damage and Genomic Instability in Microbial Pathogens
- BILBO1 Is a Scaffold Protein of the Flagellar Pocket Collar in the Pathogen
- Is Antigenic Sin Always “Original?” Re-examining the Evidence Regarding Circulation of a Human H1 Influenza Virus Immediately Prior to the 1918 Spanish Flu