#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

PPM1A Regulates Antiviral Signaling by Antagonizing TBK1-Mediated STING Phosphorylation and Aggregation


Innate antiviral immunity is essential for the host defense system that rapidly detects and eliminates invading viruses. STING, an endoplasmic reticulum (ER)-associated protein, plays important roles in the activation of type I IFN in response to DNA virus infection. Whereas excessive activation of STING can potentially cause lethal inflammatory diseases, STING activity must thus be precisely controlled to ensure the proper antiviral signaling transduction. However, the mechanisms of how STING activation is regulated are not fully understood. In this study, we find that PPM1A physically interacts with STING and negatively regulates STING-mediated antiviral signaling. Mechanistically, we find that PPM1A functions as a phosphatase that targets both STING and TBK1 for their dephosphorylation. Moreover, our study demonstrates that while TBK1 enhances STING aggregation in a kinase activity-dependent manner, PPM1A suppresses STING aggregation by dephosphorylating both STING and TBK1. Collectively, our study not only reveals that STING and TBK1 reciprocally regulate each other’s activity to elicit antiviral signaling, but also shows that PPM1A antagonizes STING aggregation by targeting both STING and TBK1, thereby maintaining proper antiviral responses.


Vyšlo v časopise: PPM1A Regulates Antiviral Signaling by Antagonizing TBK1-Mediated STING Phosphorylation and Aggregation. PLoS Pathog 11(3): e32767. doi:10.1371/journal.ppat.1004783
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004783

Souhrn

Innate antiviral immunity is essential for the host defense system that rapidly detects and eliminates invading viruses. STING, an endoplasmic reticulum (ER)-associated protein, plays important roles in the activation of type I IFN in response to DNA virus infection. Whereas excessive activation of STING can potentially cause lethal inflammatory diseases, STING activity must thus be precisely controlled to ensure the proper antiviral signaling transduction. However, the mechanisms of how STING activation is regulated are not fully understood. In this study, we find that PPM1A physically interacts with STING and negatively regulates STING-mediated antiviral signaling. Mechanistically, we find that PPM1A functions as a phosphatase that targets both STING and TBK1 for their dephosphorylation. Moreover, our study demonstrates that while TBK1 enhances STING aggregation in a kinase activity-dependent manner, PPM1A suppresses STING aggregation by dephosphorylating both STING and TBK1. Collectively, our study not only reveals that STING and TBK1 reciprocally regulate each other’s activity to elicit antiviral signaling, but also shows that PPM1A antagonizes STING aggregation by targeting both STING and TBK1, thereby maintaining proper antiviral responses.


Zdroje

1. Barber GN (2011) Cytoplasmic DNA innate immune pathways. Immunol Rev 243: 99–108. doi: 10.1111/j.1600-065X.2011.01051.x 21884170

2. Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143: 1–20. doi: 10.1196/annals.1443.020 19076341

3. Seth RB, Sun L, Chen ZJ (2006) Antiviral innate immunity pathways. Cell Res 16: 141–147. 16474426

4. Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669–682. 16125763

5. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, et al. (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6: 981–988. 16127453

6. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, et al. (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19: 727–740. 16153868

7. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, et al. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167–1172. 16177806

8. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, et al. (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146: 448–461. doi: 10.1016/j.cell.2011.06.041 21782231

9. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, et al. (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458: 514–518. doi: 10.1038/nature07725 19158675

10. Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, et al. (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10: 266–272. doi: 10.1038/ni.1702 19158679

11. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458: 509–513. doi: 10.1038/nature07710 19158676

12. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, et al. (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323: 1057–1060. doi: 10.1126/science.1169841 19131592

13. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, et al. (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448: 501–505. 17618271

14. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, et al. (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11: 997–1004. doi: 10.1038/ni.1932 20890285

15. Zhang Z, Yuan B, Bao M, Lu N, Kim T, et al. (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12: 959–965. doi: 10.1038/ni.2091 21892174

16. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786–791. doi: 10.1126/science.1232458 23258413

17. Zhong B, Yang Y, Li S, Wang YY, Li Y, et al. (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550. doi: 10.1016/j.immuni.2008.09.003 18818105

18. Sun W, Li Y, Chen L, Chen H, You F, et al. (2009) ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A 106: 8653–8658. doi: 10.1073/pnas.0900850106 19433799

19. Ahn J, Gutman D, Saijo S, Barber GN (2012) STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci U S A 109: 19386–19391. doi: 10.1073/pnas.1215006109 23132945

20. Gall A, Treuting P, Elkon KB, Loo YM, Gale M Jr., et al. (2012) Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36: 120–131. doi: 10.1016/j.immuni.2011.11.018 22284419

21. Zhong B, Zhang L, Lei C, Li Y, Mao AP, et al. (2009) The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30: 397–407. doi: 10.1016/j.immuni.2009.01.008 19285439

22. Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, et al. (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 106: 20842–20846. doi: 10.1073/pnas.0911267106 19926846

23. Konno H, Konno K, Barber GN (2013) Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155: 688–698. doi: 10.1016/j.cell.2013.09.049 24119841

24. Zhang L, Mo J, Swanson KV, Wen H, Petrucelli A, et al. (2014) NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity 40: 329–341. doi: 10.1016/j.immuni.2014.01.010 24560620

25. Tanaka Y, Chen ZJ (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 5: ra20. doi: 10.1126/scisignal.2002521 22394562

26. Liu S, Cai X, Wu J, Cong Q, Chen X, et al. (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science.

27. Takekawa M, Maeda T, Saito H (1998) Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J 17: 4744–4752. 9707433

28. Cheng A, Ross KE, Kaldis P, Solomon MJ (1999) Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases. Genes Dev 13: 2946–2957. 10580002

29. Sun W, Yu Y, Dotti G, Shen T, Tan X, et al. (2009) PPM1A and PPM1B act as IKKbeta phosphatases to terminate TNFalpha-induced IKKbeta-NF-kappaB activation. Cell Signal 21: 95–102. doi: 10.1016/j.cellsig.2008.09.012 18930133

30. Lu X, An H, Jin R, Zou M, Guo Y, et al. (2014) PPM1A is a RelA phosphatase with tumor suppressor-like activity. Oncogene 33: 2918–2927. doi: 10.1038/onc.2013.246 23812431

31. Zhao Y, Liang L, Fan Y, Sun S, An L, et al. (2012) PPM1B negatively regulates antiviral response via dephosphorylating TBK1. Cell Signal 24: 2197–2204. doi: 10.1016/j.cellsig.2012.06.017 22750291

32. Jackson MD, Fjeld CC, Denu JM (2003) Probing the function of conserved residues in the serine/threonine phosphatase PP2Calpha. Biochemistry 42: 8513–8521. 12859198

33. Lin X, Duan X, Liang YY, Su Y, Wrighton KH, et al. (2006) PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 125: 915–928. 16751101

34. Cai X, Chen J, Xu H, Liu S, Jiang QX, et al. (2014) Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156: 1207–1222. doi: 10.1016/j.cell.2014.01.063 24630723

35. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, et al. (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156: 1193–1206. doi: 10.1016/j.cell.2014.02.008 24630722

36. Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137: 146–158. doi: 10.1016/j.cell.2009.02.044 19345193

37. Xia L, Jia S, Huang S, Wang H, Zhu Y, et al. (2010) The Fused/Smurf complex controls the fate of Drosophila germline stem cells by generating a gradient BMP response. Cell 143: 978–990. doi: 10.1016/j.cell.2010.11.022 21145463

38. Vitour D, Dabo S, Ahmadi Pour M, Vilasco M, Vidalain PO, et al. (2009) Polo-like kinase 1 (PLK1) regulates interferon (IFN) induction by MAVS. J Biol Chem 284: 21797–21809. doi: 10.1074/jbc.M109.018275 19546225

39. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, et al. (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: 491–496. 12692549

40. Galati D, Srinivasan S, Raza H, Prabu SK, Hardy M, et al. (2009) Role of nuclear-encoded subunit Vb in the assembly and stability of cytochrome c oxidase complex: implications in mitochondrial dysfunction and ROS production. Biochem J 420: 439–449. doi: 10.1042/BJ20090214 19338496

41. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461: 788–792. doi: 10.1038/nature08476 19776740

42. Yang X, Teng Y, Hou N, Fan X, Cheng X, et al. (2011) Delayed re-epithelialization in Ppm1a gene-deficient mice is mediated by enhanced activation of Smad2. J Biol Chem 286: 42267–42273. doi: 10.1074/jbc.M111.292284 21990361

43. Sun Q, Sun L, Liu HH, Chen X, Seth RB, et al. (2006) The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24: 633–642. 16713980

44. Chen H, Sun H, You F, Sun W, Zhou X, et al. (2011) Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 147: 436–446. doi: 10.1016/j.cell.2011.09.022 22000020

45. Zhao Y, Sun X, Nie X, Sun L, Tang TS, et al. (2012) COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production. PLoS Pathog 8: e1003086. doi: 10.1371/journal.ppat.1003086 23308066

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#