Human CD8 T-cells Recognizing Peptides from () Presented by HLA-E Have an Unorthodox Th2-like, Multifunctional, Inhibitory Phenotype and Represent a Novel Human T-cell Subset
Pathogens like Mycobacterium tuberculosis (Mtb) are recognized by human T-cells following their presentation in HLA molecules. HLA class I molecules can be divided into two types, classical as well as non-classical HLA molecules. Here we studied the non-classical HLA family member, HLA-E, which displays only minimal genetic variation between individuals and is relative resistant to down modulation by HIV infection. We have characterized the T-cells that recognize Mtb in the context of HLA-E in detail and found that these human CD8+ T-cells had unexpected, unorthodox properties: in contrast to most classical CD8+ T-cells, the T-cells activated by HLA-E uniquely produced Th2 (IL-4, IL-5, IL-13) instead of the usual Th1 cytokines, and were able to activate B-cells and induced cytokine production by these B-cells. Moreover, these HLA-E restricted CD8+ T-cells inhibited Mtb growth inside cells, an important property to contribute to resolution of the infection. Thus these T-cells represent a new player in the human immune response to infection, and add B-cell activation to the key pathways following infection with Mtb.
Vyšlo v časopise:
Human CD8 T-cells Recognizing Peptides from () Presented by HLA-E Have an Unorthodox Th2-like, Multifunctional, Inhibitory Phenotype and Represent a Novel Human T-cell Subset. PLoS Pathog 11(3): e32767. doi:10.1371/journal.ppat.1004671
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004671
Souhrn
Pathogens like Mycobacterium tuberculosis (Mtb) are recognized by human T-cells following their presentation in HLA molecules. HLA class I molecules can be divided into two types, classical as well as non-classical HLA molecules. Here we studied the non-classical HLA family member, HLA-E, which displays only minimal genetic variation between individuals and is relative resistant to down modulation by HIV infection. We have characterized the T-cells that recognize Mtb in the context of HLA-E in detail and found that these human CD8+ T-cells had unexpected, unorthodox properties: in contrast to most classical CD8+ T-cells, the T-cells activated by HLA-E uniquely produced Th2 (IL-4, IL-5, IL-13) instead of the usual Th1 cytokines, and were able to activate B-cells and induced cytokine production by these B-cells. Moreover, these HLA-E restricted CD8+ T-cells inhibited Mtb growth inside cells, an important property to contribute to resolution of the infection. Thus these T-cells represent a new player in the human immune response to infection, and add B-cell activation to the key pathways following infection with Mtb.
Zdroje
1. Ottenhoff TH, Kaufmann SH (2012) Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog 8: e1002607. doi: 10.1371/journal.ppat.1002607 22589713
2. Meyer J, McShane H (2013) The next 10 years for tuberculosis vaccines: do we have the right plans in place? Expert Rev Vaccines 12: 443–451. doi: 10.1586/erv.13.19 23560924
3. van Crevel R, Dockrell HM (2014) TANDEM: understanding diabetes and tuberculosis. Lancet Diabetes Endocrinol 2: 270–272. doi: 10.1016/S2213-8587(14)70011-7 24703039
4. O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ et al. (2013) The immune response in tuberculosis. Annu Rev Immunol 31: 475–527. doi: 10.1146/annurev-immunol-032712-095939 23516984
5. Ottenhoff TH (2012) New pathways of protective and pathological host defense to mycobacteria. Trends Microbiol 20: 419–428. doi: 10.1016/j.tim.2012.06.002 22784857
6. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA et al. (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381: 1021–1028. 23391465
7. Anthony Nolan Research Institute (2009) HLA class I and class II sequence alignments, June 2009 updates. http://www.anthonynolanorguk/research/hlainformaticsgroup (2009).
8. Veiga-Castelli LC, Felicio LP, Georg RC, Castelli EC, Donadi EA (2013) A nonsynonymous mutation at HLA-E defines the new E*01:06 allele in Brazilian individuals. Tissue Antigens 82: 216–217. doi: 10.1111/tan.12177 24032735
9. Strong RK, Holmes MA, Li P, Braun L, Lee N et al. (2003) HLA-E allelic variants. Correlating differential expression, peptide affinities, crystal structures, and thermal stabilities. J Biol Chem 278: 5082–5090. 12411439
10. Grotzke JE, Harriff MJ, Siler AC, Nolt D, Delepine J et al. (2009) The Mycobacterium tuberculosis phagosome is a HLA-I processing competent organelle. PLoS Pathog 5: e1000374. doi: 10.1371/journal.ppat.1000374 19360129
11. Harriff MJ, Cansler ME, Toren KG, Canfield ET, Kwak S et al. (2014) Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8(+) T cells. PLoS One 9: e97515. doi: 10.1371/journal.pone.0097515 24828674
12. Lo WF, Woods AS, DeCloux A, Cotter RJ, Metcalf ES et al. (2000) Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens. Nat Med 6: 215–218. 10655113
13. Nagarajan NA, Gonzalez F, Shastri N (2012) Nonclassical MHC class Ib-restricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum. Nat Immunol 13: 579–586. doi: 10.1038/ni.2282 22522492
14. van Hall T, Oliveira CC, Joosten SA, Ottenhoff TH (2010) The other Janus face of Qa-1 and HLA-E: Diverse peptide repertoires in times of stress. Microbes Infect in press.
15. Oliveira CC, van Veelen PA, Querido B, de RA, Sluijter M et al. (2010) The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects. J Exp Med 207: 207–2. doi: 10.1084/jem.20091429 20038604
16. Holderried TA, Lang PA, Kim HJ, Cantor H (2013) Genetic disruption of CD8+ Treg activity enhances the immune response to viral infection. Proc Natl Acad Sci U S A 110: 21089–21094. doi: 10.1073/pnas.1320999110 24324159
17. Allard M, Tonnerre P, Nedellec S, Oger R, Morice A et al. (2012) HLA-E-restricted cross-recognition of allogeneic endothelial cells by CMV-associated CD8 T cells: a potential risk factor following transplantation. PLoS One 7: e50951. doi: 10.1371/journal.pone.0050951 23226431
18. Pietra G, Romagnani C, Mazzarino P, Falco M, Millo E et al. (2003) HLA-E-restricted recognition of cytomegalovirus-derived peptides by human CD8+ cytolytic T lymphocytes. Proc Natl Acad Sci U S A 100: 10896–10901. 12960383
19. Mazzarino P, Pietra G, Vacca P, Falco M, Colau D et al. (2005) Identification of effector-memory CMV-specific T lymphocytes that kill CMV-infected target cells in an HLA-E-restricted fashion. Eur J Immunol 35: 3240–3247. 16224817
20. Salerno-Goncalves R, Fernandez-Vina M, Lewinsohn DM, Sztein MB (2004) Identification of a human HLA-E-restricted CD8+ T cell subset in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J Immunol 173: 5852–5862. 15494539
21. Salerno-Goncalves R, Wahid R, Sztein MB (2010) Ex Vivo kinetics of early and long-term multifunctional human leukocyte antigen E-specific CD8+ cells in volunteers immunized with the Ty21a typhoid vaccine. Clin Vaccine Immunol 17: 1305–1314. doi: 10.1128/CVI.00234-10 20660136
22. Heinzel AS, Grotzke JE, Lines RA, Lewinsohn DA, McNabb AL et al. (2002) HLA-E-dependent presentation of Mtb-derived antigen to human CD8+ T cells. J Exp Med 196: 1473–1481. 12461082
23. Joosten SA, van Meijgaarden KE, van Weeren PC, Kazi F, Geluk A et al. (2010) Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity. PLoS Pathog 6: e1000782. doi: 10.1371/journal.ppat.1000782 20195504
24. Jorgensen PB, Livbjerg AH, Hansen HJ, Petersen T, Hollsberg P (2012) Epstein-Barr virus peptide presented by HLA-E is predominantly recognized by CD8(bright) cells in multiple sclerosis patients. PLoS One 7: e46120. doi: 10.1371/journal.pone.0046120 23049954
25. Britten CM, Janetzki S, Butterfield LH, Ferrari G, Gouttefangeas C et al. (2012) T cell assays and MIATA: the essential minimum for maximum impact. Immunity 37: 1–2. doi: 10.1016/j.immuni.2012.07.010 22840835
26. Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ et al. (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110: 201–210. 17371945
27. Sarantopoulos S, Lu L, Cantor H (2004) Qa-1 restriction of CD8+ suppressor T cells. J Clin Invest 114: 1218–1221. 15520850
28. Varthaman A, Khallou-Laschet J, Clement M, Fornasa G, Kim HJ et al. (2010) Control of T cell reactivation by regulatory Qa-1-restricted CD8+ T cells. J Immunol 184: 6585–6591. doi: 10.4049/jimmunol.0903109 20488793
29. Joosten SA, Goeman JJ, Sutherland JS, Opmeer L, de Boer KG et al. (2012) Identification of biomarkers for tuberculosis disease using a novel dual-color RT-MLPA assay. Genes Immun 13: 71–82. doi: 10.1038/gene.2011.64 21956656
30. Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS et al. (2003) Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302: 1041–1043. 14605368
31. Mutis T, Kraakman EM, Cornelisse YE, Haanen JB, Spits H et al. (1993) Analysis of cytokine production by Mycobacterium-reactive T cells. Failure to explain Mycobacterium leprae-specific nonresponsiveness of peripheral blood T cells from lepromatous leprosy patients. J Immunol 150: 4641–4651. 8482851
32. Yagi R, Zhu J, Paul WE (2011) An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. Int Immunol 23: 415–420. doi: 10.1093/intimm/dxr029 21632975
33. Wang Y, Misumi I, Gu AD, Curtis TA, Su L et al. (2013) GATA-3 controls the maintenance and proliferation of T cells downstream of TCR and cytokine signaling. Nat Immunol 14: 714–722. doi: 10.1038/ni.2623 23708251
34. Tai TS, Pai SY, Ho IC (2013) GATA-3 regulates the homeostasis and activation of CD8+ T cells. J Immunol 190: 428–437. doi: 10.4049/jimmunol.1201361 23225883
35. Medsger TA Jr., Ivanco DE, Kardava L, Morel PA, Lucas MR et al. (2011) GATA-3 up-regulation in CD8+ T cells as a biomarker of immune dysfunction in systemic sclerosis, resulting in excessive interleukin-13 production. Arthritis Rheum 63: 1738–1747. doi: 10.1002/art.30489 21638273
36. Hijnen D, Knol EF, Gent YY, Giovannone B, Beijn SJ et al. (2013) CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-gamma, IL-13, IL-17, and IL-22. J Invest Dermatol 133: 973–979. doi: 10.1038/jid.2012.456 23223131
37. Fuschiotti P, Larregina AT, Ho J, Feghali-Bostwick C, Medsger TA Jr. (2013) Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum 65: 236–246. doi: 10.1002/art.37706 23001877
38. Fuschiotti P, Medsger TA Jr., Morel PA (2009) Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis. Arthritis Rheum 60: 1119–1128. doi: 10.1002/art.24432 19333920
39. Dakhama A, Collins ML, Ohnishi H, Goleva E, Leung DY et al. (2013) IL-13-producing BLT1-positive CD8 cells are increased in asthma and are associated with airway obstruction. Allergy 68: 666–673. doi: 10.1111/all.12135 23573812
40. Hammaren MM, Oksanen KE, Nisula HM, Luukinen BV, Pesu M et al. (2014) Adequate Th2-type response associates with restricted bacterial growth in latent mycobacterial infection of zebrafish. PLoS Pathog 10: e1004190. doi: 10.1371/journal.ppat.1004190 24968056
41. Jung YJ, LaCourse R, Ryan L, North RJ (2002) Evidence inconsistent with a negative influence of T helper 2 cells on protection afforded by a dominant T helper 1 response against Mycobacterium tuberculosis lung infection in mice. Infect Immun 70: 6436–6443. 12379724
42. Heitmann L, Abad DM, Schreiber T, Erdmann H, Behrends J et al. (2014) The IL-13/IL-4R-alpha axis is involved in tuberculosis-associated pathology. J Pathol.
43. Rahman S, Gudetta B, Fink J, Granath A, Ashenafi S et al. (2009) Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory t cells in the granulomatous lesions. Am J Pathol 174: 2211–2224. doi: 10.2353/ajpath.2009.080941 19435796
44. Ashenafi S, Aderaye G, Bekele A, Zewdie M, Aseffa G et al. (2014) Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol 151: 84–99. doi: 10.1016/j.clim.2014.01.010 24584041
45. Jackson-Sillah D, Cliff JM, Mensah GI, Dickson E, Sowah S et al. (2013) Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB. PLoS One 8: e68121. 23826366
46. Joosten SA, Fletcher HA, Ottenhoff TH (2013) A helicopter perspective on TB biomarkers: pathway and process based analysis of gene expression data provides new insight into TB pathogenesis. PLoS One 8: e73230. doi: 10.1371/journal.pone.0073230 24066041
47. Cliff JM, Lee JS, Constantinou N, Cho JE, Clark TG et al. (2013) Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis 207: 18–29. doi: 10.1093/infdis/jis499 22872737
48. Achkar JM, Casadevall A (2013) Antibody-mediated immunity against tuberculosis: implications for vaccine development. Cell Host Microbe 13: 250–262. doi: 10.1016/j.chom.2013.02.009 23498951
49. Maglione PJ, Chan J (2009) How B cells shape the immune response against Mycobacterium tuberculosis. Eur J Immunol 39: 676–686. doi: 10.1002/eji.200839148 19283721
50. Ulrichs T, Kosmiadi GA, Trusov V, Jorg S, Pradl L et al. (2004) Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol 204: 217–228. 15376257
51. Phuah JY, Mattila JT, Lin PL, Flynn JL (2012) Activated B cells in the granulomas of nonhuman primates infected with Mycobacterium tuberculosis. Am J Pathol 181: 508–514. doi: 10.1016/j.ajpath.2012.05.009 22721647
52. Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K et al. (2007) Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med (Berl) 85: 613–621. 17318616
53. Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T et al. (2011) Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun 12: 15–22. doi: 10.1038/gene.2010.51 20861863
54. Sutherland JS, Loxton AG, Haks MC, Kassa D, Ambrose L et al. (2014) Differential gene expression of activating Fcgamma receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clin Microbiol Infect 20: O230–O238. doi: 10.1111/1469-0691.12383 24205913
55. McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL et al. (2013) Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol 14: 327–336. doi: 10.1038/ni.2548 23455675
56. Geijtenbeek TB, Gringhuis SI (2013) An inside job for antibodies: tagging pathogens for intracellular sensing. Nat Immunol 14: 309–311. doi: 10.1038/ni.2574 23507635
57. Ulbrecht M, Martinozzi S, Grzeschik M, Hengel H, Ellwart JW et al. (2000) Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J Immunol 164: 5019–5022. 10799855
58. Joosten SA, van Meijgaarden KE, Savage ND, de Boer T, Triebel F et al. (2007) Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A 104: 8029–8034. 17483450
59. Boer MC, van Meijgaarden KE, Bastid J, Ottenhoff TH, Joosten SA (2013) CD39 is involved in mediating suppression by Mycobacterium bovis BCG-activated human CD8(+) CD39(+) regulatory T cells. Eur J Immunol 43: 1925–1932. doi: 10.1002/eji.201243286 23606272
60. Boer MC, van Meijgaarden KE, Joosten SA, Ottenhoff TH (2014) CD8+ Regulatory T Cells, and Not CD4+ T Cells, Dominate Suppressive Phenotype and Function after In Vitro Live Mycobacterium bovis-BCG Activation of Human Cells. PLoS One 9: e94192. doi: 10.1371/journal.pone.0094192 24714620
61. Ottenhoff TH, Kale Ab B, van Embden JD, Thole JE, Kiessling R (1988) The recombinant 65-kD heat shock protein of Mycobacterium bovis Bacillus Calmette-Guerin/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J Exp Med 168: 1947–1952. 2903217
62. Miller JD, Weber DA, Ibegbu C, Pohl J, Altman JD et al. (2003) Analysis of HLA-E peptide-binding specificity and contact residues in bound peptide required for recognition by CD94/NKG2. J Immunol 171: 1369–1375. 12874227
63. Geluk A, van Meijgaarden KE, Wilson L, Bobosha K, van der Ploeg-van Schip JJ et al. (2014) Longitudinal immune responses and gene expression profiles in type 1 leprosy reactions. J Clin Immunol 34: 245–255. doi: 10.1007/s10875-013-9979-x 24370984
64. Ottenhoff TH, Mutis T (1990) Specific killing of cytotoxic T cells and antigen-presenting cells by CD4+ cytotoxic T cell clones. A novel potentially immunoregulatory T-T cell interaction in man. J Exp Med 171: 2011–2024. 1972178
65. Janson AA, Klatser PR, van der Zee R, Cornelisse YE, de Vries RR et al. (1991) A systematic molecular analysis of the T cell-stimulating antigens from Mycobacterium leprae with T cell clones of leprosy patients. Identification of a novel M. leprae HSP 70 fragment by M. leprae-specific T cells. J Immunol 147: 3530–3537. 1940353
66. Lamb JR, Eckels DD, Lake P, Woody JN, Green N (1982) Human T-cell clones recognize chemically synthesized peptides of influenza haemagglutinin. Nature 300: 66–69. 6982419
67. van Els CA, D'Amaro J, Pool J, Blokland E, Bakker A et al. (1992) Immunogenetics of human minor histocompatibility antigens: their polymorphism and immunodominance. Immunogenetics 35: 161–165. 1537607
68. Caccamo N, Guggino G, Meraviglia S, Gelsomino G, Di CP et al. (2009) Analysis of Mycobacterium tuberculosis-specific CD8 T-cells in patients with active tuberculosis and in individuals with latent infection. PLoS One 4: e5528. doi: 10.1371/journal.pone.0005528 19436760
69. Tang ST, van Meijgaarden KE, Caccamo N, Guggino G, Klein MR et al. (2011) Genome-based in silico identification of new Mycobacterium tuberculosis antigens activating polyfunctional CD8+ T cells in human tuberculosis. J Immunol 186: 1068–1080. doi: 10.4049/jimmunol.1002212 21169544
70. Heatley SL, Pietra G, Lin J, Widjaja JM, Harpur CM et al. (2013) Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells. J Biol Chem 288: 8679–8690. doi: 10.1074/jbc.M112.409672 23335510
71. Schulte D, Vogel M, Langhans B, Kramer B, Korner C et al. (2009) The HLA-E(R)/HLA-E(R) genotype affects the natural course of hepatitis C virus (HCV) infection and is associated with HLA-E-restricted recognition of an HCV-derived peptide by interferon-gamma-secreting human CD8(+) T cells. J Infect Dis 200: 1397–1401. doi: 10.1086/605889 19780673
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 3
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Bacterial Immune Evasion through Manipulation of Host Inhibitory Immune Signaling
- Antimicrobial-Induced DNA Damage and Genomic Instability in Microbial Pathogens
- BILBO1 Is a Scaffold Protein of the Flagellar Pocket Collar in the Pathogen
- Is Antigenic Sin Always “Original?” Re-examining the Evidence Regarding Circulation of a Human H1 Influenza Virus Immediately Prior to the 1918 Spanish Flu