#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Attenuation of Tick-Borne Encephalitis Virus Using Large-Scale Random Codon Re-encoding


The arbovirus Tick-borne encephalitis virus (TBEV; genus Flavivirus) is transmitted by ticks of the Ixodes genus. TBEV causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. The incidence of TBE is increasing across Central and Eastern European countries despite the availability of several licensed inactivated vaccines and appropriate vaccination programmes. Large-scale codon re-encoding, a recently developed attenuation method that modifies viral RNA nucleotide composition of large coding regions without alteration of the encoded proteins, has been successfully applied to a variety of RNA viruses. In contrast with previous empirical methods of generating live attenuated vaccines, large-scale codon re-encoding facilitates rapid generation of vaccine candidates using reverse genetics methods, by direct control of the attenuation phenotype. Additional benefits include reduced costs and induction of long-term immunity. Here, we have applied the large-scale codon re-encoding method to the TBEV to demonstrate the principle of developing a live attenuated virus vaccine which protects mice against subsequent infection with the wild type virulent virus. This study therefore illustrates that codon re-encoding is potentially an easily derived and effective method of producing live attenuated vaccine candidates against positive-stranded RNA viruses.


Vyšlo v časopise: Attenuation of Tick-Borne Encephalitis Virus Using Large-Scale Random Codon Re-encoding. PLoS Pathog 11(3): e32767. doi:10.1371/journal.ppat.1004738
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004738

Souhrn

The arbovirus Tick-borne encephalitis virus (TBEV; genus Flavivirus) is transmitted by ticks of the Ixodes genus. TBEV causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. The incidence of TBE is increasing across Central and Eastern European countries despite the availability of several licensed inactivated vaccines and appropriate vaccination programmes. Large-scale codon re-encoding, a recently developed attenuation method that modifies viral RNA nucleotide composition of large coding regions without alteration of the encoded proteins, has been successfully applied to a variety of RNA viruses. In contrast with previous empirical methods of generating live attenuated vaccines, large-scale codon re-encoding facilitates rapid generation of vaccine candidates using reverse genetics methods, by direct control of the attenuation phenotype. Additional benefits include reduced costs and induction of long-term immunity. Here, we have applied the large-scale codon re-encoding method to the TBEV to demonstrate the principle of developing a live attenuated virus vaccine which protects mice against subsequent infection with the wild type virulent virus. This study therefore illustrates that codon re-encoding is potentially an easily derived and effective method of producing live attenuated vaccine candidates against positive-stranded RNA viruses.


Zdroje

1. Gould EA, Solomon T (2008) Pathogenic flaviviruses. Lancet 371: 500–509. doi: 10.1016/S0140-6736(08)60238-X 18262042

2. Gubler DJ (2012) Flaviviruses: Past, Present and Future. Molecular Virology and Control of Flaviviruses: 1–7.

3. Firth AE, Brierley I (2012) Non-canonical translation in RNA viruses. J Gen Virol 93: 1385–1409. doi: 10.1099/vir.0.042499-0 22535777

4. Firth AE, Atkins JF (2009) A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1′ may derive from ribosomal frameshifting. Virol J 6: 14. doi: 10.1186/1743-422X-6-14 19196463

5. Cook S, Holmes EC (2006) A multigene analysis of the phylogenetic relationships among the flaviviruses (Family: Flaviviridae) and the evolution of vector transmission. Arch Virol 151: 309–325. 16172840

6. Grard G, Moureau G, Charrel RN, Lemasson JJ, Gonzalez JP, et al. (2007) Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology 361: 80–92. 17169393

7. Charrel RN, Attoui H, Butenko AM, Clegg JC, Deubel V, et al. (2004) Tick-borne virus diseases of human interest in Europe. Clin Microbiol Infect 10: 1040–1055. 15606630

8. Ecker M, Allison SL, Meixner T, Heinz FX (1999) Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J Gen Virol 80 (Pt 1): 179–185. 9934700

9. Gritsun TS, Lashkevich VA, Gould EA (2003) Tick-borne encephalitis. Antiviral Res 57: 129–146. 12615309

10. Korenberg EI, Kovalevskii YV (1999) Main features of tick-borne encephalitis eco-epidemiology in Russia. Zentralbl Bakteriol 289: 525–539. 10652719

11. Lehrer AT, Holbrook MR (2011) Tick-borne Encephalitis Vaccines. J Bioterror Biodef 2011: 3. 23997980

12. Lundkvist A, Wallensten A, Vene S, Hjertqvist M (2011) Tick-borne encephalitis increasing in Sweden, 2011. Euro Surveill 16.

13. Suss J (2008) Tick-borne encephalitis in Europe and beyond—the epidemiological situation as of 2007. Euro Surveill 13.

14. Kollaritsch H, Chmelik V, Dontsenko I, Grzeszczuk A, Kondrusik M, et al. (2011) The current perspective on tick-borne encephalitis awareness and prevention in six Central and Eastern European countries: report from a meeting of experts convened to discuss TBE in their region. Vaccine 29: 4556–4564. doi: 10.1016/j.vaccine.2011.04.061 21549781

15. Heinz FX, Stiasny K (2012) Flaviviruses and flavivirus vaccines. Vaccine 30: 4301–4306. doi: 10.1016/j.vaccine.2011.09.114 22682286

16. Barrett AD (2001) Current status of flavivirus vaccines. Ann N Y Acad Sci 951: 262–271. 11797783

17. Kitchener S (2004) Viscerotropic and neurotropic disease following vaccination with the 17D yellow fever vaccine, ARILVAX. Vaccine 22: 2103–2105. 15149765

18. Meng J, Lee S, Hotard AL, Moore ML (2014) Refining the Balance of Attenuation and Immunogenicity of Respiratory Syncytial Virus by Targeted Codon Deoptimization of Virulence Genes. MBio 5.

19. Le Nouen C, Brock LG, Luongo C, McCarty T, Yang L, et al. (2014) Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization. Proc Natl Acad Sci U S A 111: 13169–13174. doi: 10.1073/pnas.1411290111 25157129

20. Ni YY, Zhao Z, Opriessnig T, Subramaniam S, Zhou L, et al. (2014) Computer-aided codon-pairs deoptimization of the major envelope GP5 gene attenuates porcine reproductive and respiratory syndrome virus. Virology 450–451: 132–139.

21. Martrus G, Nevot M, Andres C, Clotet B, Martinez MA (2013) Changes in codon-pair bias of human immunodeficiency virus type 1 have profound effects on virus replication in cell culture. Retrovirology 10: 78. doi: 10.1186/1742-4690-10-78 23885919

22. Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, et al. (2006) Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol 80: 3259–3272. 16537593

23. Mueller S, Papamichail D, Coleman JR, Skiena S, Wimmer E (2006) Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol 80: 9687–9696. 16973573

24. Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, et al. (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320: 1784–1787. doi: 10.1126/science.1155761 18583614

25. Mueller S, Coleman JR, Papamichail D, Ward CB, Nimnual A, et al. (2010) Live attenuated influenza virus vaccines by computer-aided rational design. Nat Biotechnol 28: 723–726. doi: 10.1038/nbt.1636 20543832

26. Burns CC, Campagnoli R, Shaw J, Vincent A, Jorba J, et al. (2009) Genetic inactivation of poliovirus infectivity by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous capsid region codons. J Virol 83: 9957–9969. doi: 10.1128/JVI.00508-09 19605476

27. Nougairede A, De Fabritus L, Aubry F, Gould EA, Holmes EC, et al. (2013) Random codon re-encoding induces stable reduction of replicative fitness of Chikungunya virus in primate and mosquito cells. PLoS Pathog 9: e1003172. doi: 10.1371/journal.ppat.1003172 23436995

28. Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH (2004) Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci U S A 101: 3480–3485. 14990797

29. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr., et al. (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460: 711–716. doi: 10.1038/nature08237 19661910

30. Thurner C, Witwer C, Hofacker IL, Stadler PF (2004) Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol 85: 1113–1124. 15105528

31. Jones CT, Ma L, Burgner JW, Groesch TD, Post CB, et al. (2003) Flavivirus capsid is a dimeric alpha-helical protein. J Virol 77: 7143–7149. 12768036

32. Bull JJ, Molineux IJ, Wilke CO (2012) Slow fitness recovery in a codon-modified viral genome. Mol Biol Evol 29: 2997–3004. 22532576

33. Takashima I, Morita K, Chiba M, Hayasaka D, Sato T, et al. (1997) A case of tick-borne encephalitis in Japan and isolation of the the virus. J Clin Microbiol 35: 1943–1947. 9230360

34. Hayasaka D, Gritsun TS, Yoshii K, Ueki T, Goto A, et al. (2004) Amino acid changes responsible for attenuation of virus neurovirulence in an infectious cDNA clone of the Oshima strain of tick-borne encephalitis virus. J Gen Virol 85: 1007–1018. 15039543

35. Tigabu B, Juelich T, Bertrand J, Holbrook MR (2009) Clinical evaluation of highly pathogenic tick-borne flavivirus infection in the mouse model. J Med Virol 81: 1261–1269. doi: 10.1002/jmv.21524 19475605

36. Hayasaka D, Nagata N, Fujii Y, Hasegawa H, Sata T, et al. (2009) Mortality following peripheral infection with tick-borne encephalitis virus results from a combination of central nervous system pathology, systemic inflammatory and stress responses. Virology 390: 139–150. doi: 10.1016/j.virol.2009.04.026 19467556

37. Kimura T, Sasaki M, Okumura M, Kim E, Sawa H (2010) Flavivirus encephalitis: pathological aspects of mouse and other animal models. Vet Pathol 47: 806–818. doi: 10.1177/0300985810372507 20551474

38. Bakhvalova VN, Dobrotvorsky AK, Panov VV, Matveeva VA, Tkachev SE, et al. (2006) Natural tick-borne encephalitis virus infection among wild small mammals in the southeastern part of western Siberia, Russia. Vector Borne Zoonotic Dis 6: 32–41. 16584325

39. Kozuch O, Gresikova M, Nosek J, Lichard M, Sekeyova M (1967) The role of small rodents and hedgehogs in a natural focus of tick-borne encephalitis. Bull World Health Organ 36 Suppl: 61–66. 5298543

40. Shrestha B, Gottlieb D, Diamond MS (2003) Infection and injury of neurons by West Nile encephalitis virus. J Virol 77: 13203–13213. 14645577

41. Ruzek D, Vancova M, Tesarova M, Ahantarig A, Kopecky J, et al. (2009) Morphological changes in human neural cells following tick-borne encephalitis virus infection. J Gen Virol 90: 1649–1658. doi: 10.1099/vir.0.010058-0 19264624

42. Tun MM, Aoki K, Senba M, Buerano CC, Shirai K, et al. (2014) Protective role of TNF-alpha, IL-10 and IL-2 in mice infected with the Oshima strain of Tick-borne encephalitis virus. Sci Rep 4: 5344. doi: 10.1038/srep05344 24938868

43. Ruzek D, Salat J, Palus M, Gritsun TS, Gould EA, et al. (2009) CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology 384: 1–6. doi: 10.1016/j.virol.2008.11.023 19070884

44. King NJ, Getts DR, Getts MT, Rana S, Shrestha B, et al. (2007) Immunopathology of flavivirus infections. Immunol Cell Biol 85: 33–42. 17146465

45. Hayasaka D, Shirai K, Aoki K, Nagata N, Simantini DS, et al. (2013) TNF-alpha acts as an immunoregulator in the mouse brain by reducing the incidence of severe disease following Japanese encephalitis virus infection. PLoS One 8: e71643. doi: 10.1371/journal.pone.0071643 23940775

46. Goto A, Hayasaka D, Yoshii K, Mizutani T, Kariwa H, et al. (2003) A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. Vaccine 21: 4043–4051. 12922141

47. Wagner RR (1960) Viral Interference. Some Considerations of Basic Mechanisms and Their Potential Relationship to Host Resistance. Bacteriol Rev 24: 151–166. 16350163

48. Roux L, Simon AE, Holland JJ (1991) Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv Virus Res 40: 181–211. 1957718

49. Gritsun TS, Frolova TV, Zhankov AI, Armesto M, Turner SL, et al. (2003) Characterization of a siberian virus isolated from a patient with progressive chronic tick-borne encephalitis. J Virol 77: 25–36. 12477807

50. Coffin JM (2008) Attenuation by a thousand cuts. N Engl J Med 359: 2283–2285. doi: 10.1056/NEJMcibr0805820 19020330

51. Zhang SP, Zubay G, Goldman E (1991) Low-usage codons in Escherichia coli, yeast, fruit fly and primates. Gene 105: 61–72. 1937008

52. Zhou JH, Zhang J, Chen HT, Ma LN, Liu YS (2010) Analysis of synonymous codon usage in foot-and-mouth disease virus. Vet Res Commun 34: 393–404. doi: 10.1007/s11259-010-9359-4 20425142

53. Peden J (1997) CodonW v1.3. Laboratory of Paul Sharp at the University of Nottingham.

54. Ninove L, Nougairede A, Gazin C, Thirion L, Delogu I, et al. (2011) RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology: a comprehensive study of more than 45,000 routine PCR tests. PLoS One 6: e16142. doi: 10.1371/journal.pone.0016142 21347398

55. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, et al. (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5: e12191. doi: 10.1371/journal.pone.0012191 20808947

56. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27: 493–497.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#