Induction of Interferon-Stimulated Genes by IRF3 Promotes Replication of
Interferon Regulatory Factor 3 (IRF3) is an essential transcription factor for the expression of antiviral genes, including type I IFNs and ISGs. The coordinated action of the ISGs leads to the inhibition of one or multiple steps of viral life cycle. In contrast to the well-known antiviral function of IRF3, we report here an unexpected pro-parasitic role of IRF3 in supporting the replication of the protozoan parasite, Toxoplasma gondii, in both cells and mice. The IRF3-deficient mice did not support T. gondii replication and, therefore, were protected from T. gondii-induced pathogenesis. The novel pro-Toxoplasma role of IRF3 was type I IFN-independent, but required its transcriptional function that induced the effector ISGs. Using cells deficient in known components of the IRF3 activation pathways, we have delineated the nature of the pro-parasitic signaling pathway, which we named ‘PISA’. Our detailed genetic and biochemical analyses revealed that PISA is activated by a T. gondii-triggered cytoplasmic cGAS/STING/TBK1-dependent pathway that activates IRF3 for the induction of the pro-parasitic ISGs.
Vyšlo v časopise:
Induction of Interferon-Stimulated Genes by IRF3 Promotes Replication of. PLoS Pathog 11(3): e32767. doi:10.1371/journal.ppat.1004779
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004779
Souhrn
Interferon Regulatory Factor 3 (IRF3) is an essential transcription factor for the expression of antiviral genes, including type I IFNs and ISGs. The coordinated action of the ISGs leads to the inhibition of one or multiple steps of viral life cycle. In contrast to the well-known antiviral function of IRF3, we report here an unexpected pro-parasitic role of IRF3 in supporting the replication of the protozoan parasite, Toxoplasma gondii, in both cells and mice. The IRF3-deficient mice did not support T. gondii replication and, therefore, were protected from T. gondii-induced pathogenesis. The novel pro-Toxoplasma role of IRF3 was type I IFN-independent, but required its transcriptional function that induced the effector ISGs. Using cells deficient in known components of the IRF3 activation pathways, we have delineated the nature of the pro-parasitic signaling pathway, which we named ‘PISA’. Our detailed genetic and biochemical analyses revealed that PISA is activated by a T. gondii-triggered cytoplasmic cGAS/STING/TBK1-dependent pathway that activates IRF3 for the induction of the pro-parasitic ISGs.
Zdroje
1. Torgerson PR, Mastroiacovo P (2013) The global burden of congenital toxoplasmosis: a systematic review. Bull World Health Organ 91: 501–508. doi: 10.2471/BLT.12.111732 23825877
2. Cosentino MJ, Pakyz RE, Fried J (1990) Pyrimethamine: an approach to the development of a male contraceptive. Proc Natl Acad Sci U S A 87: 1431–1435. 2304908
3. Kongsaengdao S, Samintarapanya K, Oranratnachai K, Prapakarn W, Apichartpiyakul C (2008) Randomized controlled trial of pyrimethamine plus sulfadiazine versus trimethoprim plus sulfamethoxazole for treatment of toxoplasmic encephalitis in AIDS patients. J Int Assoc Physicians AIDS Care (Chic) 7: 11–16. 17517949
4. Frenkel JK (1988) Pathophysiology of toxoplasmosis. Parasitol Today 4: 273–278. 15463000
5. Sher A, Collazzo C, Scanga C, Jankovic D, Yap G, et al. (2003) Induction and regulation of IL-12-dependent host resistance to Toxoplasma gondii. Immunol Res 27: 521–528. 12857995
6. Yarovinsky F (2014) Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol 14: 109–121. doi: 10.1038/nri3598 24457485
7. Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, et al. (2002) Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J Immunol 168: 5997–6001. 12055206
8. Denkers EY, Gazzinelli RT, Martin D, Sher A (1993) Emergence of NK1.1+ cells as effectors of IFN-gamma dependent immunity to Toxoplasma gondii in MHC class I-deficient mice. J Exp Med 178: 1465–1472. 8228800
9. Khan IA, Matsuura T, Kasper LH (1994) Interleukin-12 enhances murine survival against acute toxoplasmosis. Infect Immun 62: 1639–1642. 7909536
10. Pifer R, Yarovinsky F (2011) Innate responses to Toxoplasma gondii in mice and humans. Trends Parasitol 27: 388–393. doi: 10.1016/j.pt.2011.03.009 21550851
11. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, et al. (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6: 975–990. 18049472
12. Noyce RS, Taylor K, Ciechonska M, Collins SE, Duncan R, et al. (2011) Membrane perturbation elicits an IRF3-dependent, interferon-independent antiviral response. J Virol 85: 10926–10931. doi: 10.1128/JVI.00862-11 21813605
13. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637–650. doi: 10.1016/j.immuni.2011.05.006 21616434
14. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449: 819–826. 17943118
15. Xiao TS, Fitzgerald KA (2013) The cGAS-STING pathway for DNA sensing. Mol Cell 51: 135–139. doi: 10.1016/j.molcel.2013.07.004 23870141
16. Barber GN (2014) STING-dependent cytosolic DNA sensing pathways. Trends Immunol 35: 88–93. doi: 10.1016/j.it.2013.10.010 24309426
17. Gao D, Wu J, Wu YT, Du F, Aroh C, et al. (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341: 903–906. doi: 10.1126/science.1240933 23929945
18. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786–791. doi: 10.1126/science.1232458 23258413
19. Liang Q, Seo GJ, Choi YJ, Kwak MJ, Ge J, et al. (2014) Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15: 228–238. doi: 10.1016/j.chom.2014.01.009 24528868
20. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, et al. (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: 491–496. 12692549
21. Chattopadhyay S, Fensterl V, Zhang Y, Veleeparambil M, Yamashita M, et al. (2013) Role of interferon regulatory factor 3-mediated apoptosis in the establishment and maintenance of persistent infection by Sendai virus. J Virol 87: 16–24. doi: 10.1128/JVI.01853-12 23077293
22. Chattopadhyay S, Marques JT, Yamashita M, Peters KL, Smith K, et al. (2010) Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J 29: 1762–1773. doi: 10.1038/emboj.2010.50 20360684
23. Chattopadhyay S, Fensterl V, Zhang Y, Veleeparambil M, Wetzel JL, et al. (2013) Inhibition of viral pathogenesis and promotion of the septic shock response to bacterial infection by IRF-3 are regulated by the acetylation and phosphorylation of its coactivators. MBio 4: e00636–12. doi: 10.1128/mBio.00636-12 23532979
24. Servant MJ, Grandvaux N, tenOever BR, Duguay D, Lin R, et al. (2003) Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. J Biol Chem 278: 9441–9447. 12524442
25. Ma X, Helgason E, Phung QT, Quan CL, Iyer RS, et al. (2012) Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Proc Natl Acad Sci U S A 109: 9378–9383. doi: 10.1073/pnas.1121552109 22619329
26. Evans R, Chatterton JM, Ashburn D, Joss AW, Ho-Yen DO (1999) Cell-culture system for continuous production of Toxoplasma gondii tachyzoites. Eur J Clin Microbiol Infect Dis 18: 879–884. 10691199
27. Gaji RY, Huynh MH, Carruthers VB (2013) A novel high throughput invasion screen identifies host actin regulators required for efficient cell entry by Toxoplasma gondii. PLoS One 8: e64693. doi: 10.1371/journal.pone.0064693 23741372
28. Moser LA, Pollard AM, Knoll LJ (2013) A genome-wide siRNA screen to identify host factors necessary for growth of the parasite Toxoplasma gondii. PLoS One 8: e68129. doi: 10.1371/journal.pone.0068129 23840822
29. Collazo CM, Yap GS, Sempowski GD, Lusby KC, Tessarollo L, et al. (2001) Inactivation of LRG-47 and IRG-47 reveals a family of interferon gamma-inducible genes with essential, pathogen-specific roles in resistance to infection. J Exp Med 194: 181–188. 11457893
30. Taylor GA, Collazo CM, Yap GS, Nguyen K, Gregorio TA, et al. (2000) Pathogen-specific loss of host resistance in mice lacking the IFN-gamma-inducible gene IGTP. Proc Natl Acad Sci U S A 97: 751–755. 10639151
31. Melo MB, Nguyen QP, Cordeiro C, Hassan MA, Yang N, et al. (2013) Transcriptional analysis of murine macrophages infected with different Toxoplasma strains identifies novel regulation of host signaling pathways. PLoS Pathog 9: e1003779. doi: 10.1371/journal.ppat.1003779 24367253
32. Beiting DP, Peixoto L, Akopyants NS, Beverley SM, Wherry EJ, et al. (2014) Differential induction of TLR3-dependent innate immune signaling by closely related parasite species. PLoS One 9: e88398. doi: 10.1371/journal.pone.0088398 24505488
33. Gissot M, Choi SW, Thompson RF, Greally JM, Kim K (2008) Toxoplasma gondii and Cryptosporidium parvum lack detectable DNA cytosine methylation. Eukaryot Cell 7: 537–540. doi: 10.1128/EC.00448-07 18178772
34. Ponts N, Fu L, Harris EY, Zhang J, Chung DW, et al. (2013) Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum. Cell Host Microbe 14: 696–706. doi: 10.1016/j.chom.2013.11.007 24331467
35. Sharma S, DeOliveira RB, Kalantari P, Parroche P, Goutagny N, et al. (2011) Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome. Immunity 35: 194–207. doi: 10.1016/j.immuni.2011.05.016 21820332
36. Liehl P, Zuzarte-Luis V, Chan J, Zillinger T, Baptista F, et al. (2014) Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat Med 20: 47–53. doi: 10.1038/nm.3424 24362933
37. Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, et al. (2011) Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474: 385–389. doi: 10.1038/nature10072 21602824
38. Bradley PJ, Sibley LD (2007) Rhoptries: an arsenal of secreted virulence factors. Curr Opin Microbiol 10: 582–587. 17997128
39. Fentress SJ, Behnke MS, Dunay IR, Mashayekhi M, Rommereim LM, et al. (2010) Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 8: 484–495. doi: 10.1016/j.chom.2010.11.005 21147463
40. Gilbert LA, Ravindran S, Turetzky JM, Boothroyd JC, Bradley PJ (2007) Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. Eukaryot Cell 6: 73–83. 17085638
41. Hakansson S, Charron AJ, Sibley LD (2001) Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J 20: 3132–3144. 11406590
42. Ngo HM, Yang M, Joiner KA (2004) Are rhoptries in Apicomplexan parasites secretory granules or secretory lysosomal granules? Mol Microbiol 52: 1531–1541. 15186406
43. Ong YC, Reese ML, Boothroyd JC (2010) Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6. J Biol Chem 285: 28731–28740. doi: 10.1074/jbc.M110.112359 20624917
44. Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP (2011) Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc Natl Acad Sci U S A 108: 9625–9630. doi: 10.1073/pnas.1015980108 21436047
45. Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, et al. (2006) Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314: 1780–1783. 17170306
46. Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, et al. (2007) Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445: 324–327. 17183270
47. Steinfeldt T, Konen-Waisman S, Tong L, Pawlowski N, Lamkemeyer T, et al. (2010) Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol 8: e1000576. doi: 10.1371/journal.pbio.1000576 21203588
48. Taylor S, Barragan A, Su C, Fux B, Fentress SJ, et al. (2006) A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314: 1776–1780. 17170305
49. Yamamoto M, Standley DM, Takashima S, Saiga H, Okuyama M, et al. (2009) A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3. J Exp Med 206: 2747–2760. doi: 10.1084/jem.20091703 19901082
50. Abe T, Barber GN (2014) Cytosolic DNA-Mediated, STING-Dependent Pro-Inflammatory Gene Induction Necessitates canonical NF-kappaB activation Through TBK1. J Virol.
51. Tanaka Y, Chen ZJ (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 5: ra20. doi: 10.1126/scisignal.2002521 22394562
52. Ghosh D, Walton JL, Roepe PD, Sinai AP (2012) Autophagy is a cell death mechanism in Toxoplasma gondii. Cell Microbiol 14: 589–607. doi: 10.1111/j.1462-5822.2011.01745.x 22212386
53. Hennessy EJ, Parker AE, O'Neill LA (2010) Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 9: 293–307. doi: 10.1038/nrd3203 20380038
54. Zhu J, Smith K, Hsieh PN, Mburu YK, Chattopadhyay S, et al. (2010) High-throughput screening for TLR3-IFN regulatory factor 3 signaling pathway modulators identifies several antipsychotic drugs as TLR inhibitors. J Immunol 184: 5768–5776. doi: 10.4049/jimmunol.0903559 20382888
55. Francia ME, Striepen B (2014) Cell division in apicomplexan parasites. Nat Rev Microbiol 12: 125–136. doi: 10.1038/nrmicro3184 24384598
56. Peters K, Chattopadhyay S, Sen GC (2008) IRF-3 activation by Sendai virus infection is required for cellular apoptosis and avoidance of persistence. J Virol 82: 3500–3508. doi: 10.1128/JVI.02536-07 18216110
57. Roos DS (1996) Molecular genetic tools for the identification and analysis of drug targets in Toxoplasma gondii. Curr Top Microbiol Immunol 219: 247–259. 8791705
58. Musiyenko A, Majumdar T, Andrews J, Adams B, Barik S (2012) PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA. Cell Microbiol 14: 882–901. doi: 10.1111/j.1462-5822.2012.01763.x 22309152
59. Rahumatullah A, Khoo BY, Noordin R (2012) Triplex PCR using new primers for the detection of Toxoplasma gondii. Exp Parasitol 131: 231–238. doi: 10.1016/j.exppara.2012.04.009 22561042
60. Bafica A, Feng CG, Santiago HC, Aliberti J, Cheever A, et al. (2007) The IFN-inducible GTPase LRG47 (Irgm1) negatively regulates TLR4-triggered proinflammatory cytokine production and prevents endotoxemia. J Immunol 179: 5514–5522. 17911638
61. Bernstein-Hanley I, Coers J, Balsara ZR, Taylor GA, Starnbach MN, et al. (2006) The p47 GTPases Igtp and Irgb10 map to the Chlamydia trachomatis susceptibility locus Ctrq-3 and mediate cellular resistance in mice. Proc Natl Acad Sci U S A 103: 14092–14097. 16959883
62. Swedan S, Andrews J, Majumdar T, Musiyenko A, Barik S (2011) Multiple functional domains and complexes of the two nonstructural proteins of human respiratory syncytial virus contribute to interferon suppression and cellular location. J Virol 85: 10090–10100. doi: 10.1128/JVI.00413-11 21795342
63. Swedan S, Musiyenko A, Barik S (2009) Respiratory syncytial virus nonstructural proteins decrease levels of multiple members of the cellular interferon pathways. J Virol 83: 9682–9693. doi: 10.1128/JVI.00715-09 19625398
64. Howe DK, Sibley LD (1995) Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 172: 1561–1566. 7594717
65. Sibley LD, Mordue DG, Su C, Robben PM, Howe DK (2002) Genetic approaches to studying virulence and pathogenesis in Toxoplasma gondii. Philos Trans R Soc Lond B Biol Sci 357: 81–88. 11839185
66. Fensterl V, Wetzel JL, Ramachandran S, Ogino T, Stohlman SA, et al. (2012) Interferon-Induced Ifit2/ISG54 Protects Mice from Lethal VSV Neuropathogenesis. PLoS Pathog 8: e1002712. doi: 10.1371/journal.ppat.1002712 22615570
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 3
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Bacterial Immune Evasion through Manipulation of Host Inhibitory Immune Signaling
- Antimicrobial-Induced DNA Damage and Genomic Instability in Microbial Pathogens
- BILBO1 Is a Scaffold Protein of the Flagellar Pocket Collar in the Pathogen
- Is Antigenic Sin Always “Original?” Re-examining the Evidence Regarding Circulation of a Human H1 Influenza Virus Immediately Prior to the 1918 Spanish Flu