Adhesive Fiber Stratification in Uropathogenic Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili
Bacteria are commonly found in multicellular communities known as biofilms. Biofilms can form on a variety of surfaces, both outside and within living things, and can have detrimental effects on human health. The characteristics of bacteria occupying different areas within biofilms are not well understood, and such knowledge is critical for understanding how biofilms form and for developing strategies to treat biofilm-related infections. Here, we adapted a technique to sample how proteins cluster within bacterial biofilms as a means to identify the location of bacteria with differential protein expression within the community. We observed that with uropathogenic E. coli, which is the major cause of urinary tract and catheter-associated urinary tract infections, bacteria close to the air-exposed region of the biofilm expressed different adhesive fibers compared to those at the liquid interface. We went on to show that lack of oxygen shuts down the production of fibers known to be critical for adherence to host bladder cells and to catheter material. This discovery was enabled by a new application of an existing technology that allowed us to gain insights into the spatial regulation of proteins within bacterial biofilms and to elucidate pathways that could be targeted to inhibit bacterial adherence.
Vyšlo v časopise:
Adhesive Fiber Stratification in Uropathogenic Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili. PLoS Pathog 11(3): e32767. doi:10.1371/journal.ppat.1004697
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004697
Souhrn
Bacteria are commonly found in multicellular communities known as biofilms. Biofilms can form on a variety of surfaces, both outside and within living things, and can have detrimental effects on human health. The characteristics of bacteria occupying different areas within biofilms are not well understood, and such knowledge is critical for understanding how biofilms form and for developing strategies to treat biofilm-related infections. Here, we adapted a technique to sample how proteins cluster within bacterial biofilms as a means to identify the location of bacteria with differential protein expression within the community. We observed that with uropathogenic E. coli, which is the major cause of urinary tract and catheter-associated urinary tract infections, bacteria close to the air-exposed region of the biofilm expressed different adhesive fibers compared to those at the liquid interface. We went on to show that lack of oxygen shuts down the production of fibers known to be critical for adherence to host bladder cells and to catheter material. This discovery was enabled by a new application of an existing technology that allowed us to gain insights into the spatial regulation of proteins within bacterial biofilms and to elucidate pathways that could be targeted to inhibit bacterial adherence.
Zdroje
1. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2: 95–108. 15040259
2. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61: 401–422. 17506679
3. Visick KL, Ruby EG (2006) Vibrio fischeri and its host: it takes two to tango. Curr Opin Microbiol 9: 632–638. 17049299
4. Macfarlane S, Bahrami B, Macfarlane GT (2011) Chapter 4—Mucosal Biofilm Communities in the Human Intestinal Tract. In: Allen I. Laskin SS, Geoffrey MG, editors. Advances in Applied Microbiology: Academic Press. pp. 111–143. doi: 10.1016/B978-0-12-387046-9.00005-0 21807247
5. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3: a010306. doi: 10.1101/cshperspect.a010306 23545571
6. Parsek MR, Tolker-Nielsen T (2008) Pattern formation in Pseudomonas aeruginosa biofilms. Curr Opin Microbiol 11: 560–566. doi: 10.1016/j.mib.2008.09.015 18935979
7. Hung C, Zhou Y, Pinkner JS, Dodson KW, Crowley JR, et al. (2013) Escherichia coli Biofilms Have an Organized and Complex Extracellular Matrix Structure. MBio 4.
8. Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 70: 267–274. 15807669
9. DePas WH, Hufnagel DA, Lee JS, Blanco LP, Bernstein HC, et al. (2013) Iron induces bimodal population development by Escherichia coli. Proc Natl Acad Sci U S A 110: 2629–2634. doi: 10.1073/pnas.1218703110 23359678
10. Berk V, Fong JC, Dempsey GT, Develioglu ON, Zhuang X, et al. (2012) Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337: 236–239. doi: 10.1126/science.1222981 22798614
11. Strathmann M, Wingender J, Flemming HC (2002) Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Methods 50: 237–248. 12031574
12. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69: 4751–4760. 9406525
13. Pol J, Strohalm M, Havlicek V, Volny M (2010) Molecular mass spectrometry imaging in biomedical and life science research. Histochem Cell Biol 134: 423–443. doi: 10.1007/s00418-010-0753-3 20981554
14. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nature Methods 4: 828–833. 17901873
15. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. Embo J 19: 2803–2812. 10856226
16. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, et al. (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301: 105–107. 12843396
17. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, et al. (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101: 1333–1338. 14739341
18. Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ (2007) Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4: e329. 18092884
19. Garofalo CK, Hooton TM, Martin SM, Stamm WE, Palermo JJ, et al. (2007) Escherichia coli from urine of female patients with urinary tract infections is competent for intracellular bacterial community formation. Infect Immun 75: 52–60. 17074856
20. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, et al. (2012) Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36: 616–648. doi: 10.1111/j.1574-6976.2012.00339.x 22404313
21. Foxman B (2010) The epidemiology of urinary tract infection. Nat Rev Urol 7: 653–660. doi: 10.1038/nrurol.2010.190 21139641
22. Waksman G, Hultgren SJ (2009) Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7: 765–774. doi: 10.1038/nrmicro2220 19820722
23. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, et al. (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282: 1494–1497. 9822381
24. Mulvey MA, Schilling JD, Hultgren SJ (2001) Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69: 4572–4579. 11402001
25. Seeley EH, Oppenheimer SR, Mi D, Chaurand P, Caprioli RM (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom 19: 1069–1077. doi: 10.1016/j.jasms.2008.03.016 18472274
26. O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, et al. (1999) Genetic approaches to study of biofilms. Methods Enzymol 310: 91–109. 10547784
27. Morris ML, Baird LM, Panigrahi A, Gross MC, Deacon RM, et al. (2013) Surfactant sculpting of biologically inspired hierarchical surfaces. Soft Matter 9: 9857–9866.
28. McCrate OA, Zhou X, Reichhardt C, Cegelski L (2013) Sum of the Parts: Composition and Architecture of the Bacterial Extracellular Matrix. J Mol Biol.
29. Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, et al. (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5: 913–919. doi: 10.1038/nchembio.242 19915538
30. Lim JY, May JM, Cegelski L (2012) Dimethyl sulfoxide and ethanol elicit increased amyloid biogenesis and amyloid-integrated biofilm formation in Escherichia coli. Appl Environ Microbiol 78: 3369–3378. doi: 10.1128/AEM.07743-11 22389366
31. Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320: 217–234. 9230919
32. Strohalm M, Hassman M, Košata B, Kodíček M (2008) mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Communications in Mass Spectrometry 22: 905–908. doi: 10.1002/rcm.3444 18293430
33. Schwan WR (2011) Regulation of genes in uropathogenic Escherichia coli. World J Clin Infect Dis 1: 17–25. 23638406
34. Corcoran CP, Dorman CJ (2009) DNA relaxation-dependent phase biasing of the fim genetic switch in Escherichia coli depends on the interplay of H-NS, IHF and LRP. Mol Microbiol 74: 1071–1082. doi: 10.1111/j.1365-2958.2009.06919.x 19889099
35. Struve C, Krogfelt KA (1999) In vivo detection of Escherichia coli type 1 fimbrial expression and phase variation during experimental urinary tract infection. Microbiology 145 (Pt 10): 2683–2690. 10537190
36. Chen SL, Hung CS, Pinkner JS, Walker JN, Cusumano CK, et al. (2009) Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci U S A 106: 22439–22444. doi: 10.1073/pnas.0902179106 20018753
37. Pinkner JS, Remaut H, Buelens F, Miller E, Aberg V, et al. (2006) Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci U S A 103: 17897–17902. 17098869
38. Kostakioti M, Hadjifrangiskou M, Cusumano CK, Hannan TJ, Janetka JW, et al. (2012) Distinguishing the contribution of type 1 pili from that of other QseB-misregulated factors when QseC is absent during urinary tract infection. Infect Immun 80: 2826–2834. doi: 10.1128/IAI.00283-12 22665375
39. Hadjifrangiskou M, Kostakioti M, Chen SL, Henderson JP, Greene SE, et al. (2011) A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol Microbiol 80: 1516–1529. doi: 10.1111/j.1365-2958.2011.07660.x 21542868
40. Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ (2009) QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol 73: 1020–1031. doi: 10.1111/j.1365-2958.2009.06826.x 19703104
41. Greene SE, Pinkner JS, Chorell E, Dodson KW, Shaffer CL, et al. (2014) Pilicide ec240 disrupts virulence circuits in uropathogenic Escherichia coli. MBio 5: e02038. doi: 10.1128/mBio.02038-14 25352623
42. Hultgren SJ, Schwan WR, Schaeffer AJ, Duncan JL (1986) Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect Immun 54: 613–620. 2877947
43. Hadjifrangiskou M, Gu AP, Pinkner JS, Kostakioti M, Zhang EW, et al. (2012) Transposon mutagenesis identifies uropathogenic Escherichia coli biofilm factors. J Bacteriol 194: 6195–6205. doi: 10.1128/JB.01012-12 22984258
44. Korhonen TK, Vaisanen-Rhen V, Rhen M, Pere A, Parkkinen J, et al. (1984) Escherichia coli fimbriae recognizing sialyl galactosides. J Bacteriol 159: 762–766. 6146600
45. Watrous JD, Dorrestein PC (2011) Imaging mass spectrometry in microbiology. Nat Rev Microbiol 9: 683–694. doi: 10.1038/nrmicro2634 21822293
46. Edirisinghe PD, Moore JF, Skinner-Nemec KA, Lindberg C, Giometti CS, et al. (2007) Detection of in situ derivatized peptides in microbial biofilms by laser desorption 7.87 eV postionizaton mass spectrometry. Anal Chem 79: 508–514. 17222014
47. Debois D, Hamze K, Guerineau V, Le Caer JP, Holland IB, et al. (2008) In situ localisation and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry. Proteomics 8: 3682–3691. doi: 10.1002/pmic.200701025 18709634
48. Watrous JD, Phelan VV, Hsu CC, Moree WJ, Duggan BM, et al. (2013) Microbial metabolic exchange in 3D. ISME J 7: 770–780. doi: 10.1038/ismej.2012.155 23283018
49. Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio 4.
50. Yang JY, Phelan VV, Simkovsky R, Watrous JD, Trial RM, et al. (2012) Primer on agar-based microbial imaging mass spectrometry. J Bacteriol 194: 6023–6028. doi: 10.1128/JB.00823-12 22821974
51. Nguyen DD, Wu CH, Moree WJ, Lamsa A, Medema MH, et al. (2013) MS/MS networking guided analysis of molecule and gene cluster families. Proc Natl Acad Sci U S A 110: E2611–2620. doi: 10.1073/pnas.1303471110 23798442
52. M TM, Aydin B, Carlson RP, Hanley L (2012) Identification and imaging of peptides and proteins on Enterococcus faecalis biofilms by matrix assisted laser desorption ionization mass spectrometry. Analyst 137: 5018–5025. doi: 10.1039/c2an35922g 22962657
53. Norris JL, Caprioli RM (2013) Imaging mass spectrometry: a new tool for pathology in a molecular age. Proteomics Clin Appl 7: 733–738. doi: 10.1002/prca.201300055 24178781
54. Seeley EH, Caprioli RM (2008) Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci U S A 105: 18126–18131. doi: 10.1073/pnas.0801374105 18776051
55. Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38: 699–708. 12898649
56. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5: 48–56. 17143318
57. Lopez D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2: a000398. doi: 10.1101/cshperspect.a000398 20519345
58. Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, et al. (2013) BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci U S A 110: 13600–13605. doi: 10.1073/pnas.1306390110 23904481
59. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322: 107–131. 18453274
60. Alteri CJ, Smith SN, Mobley HL (2009) Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5: e1000448. doi: 10.1371/journal.ppat.1000448 19478872
61. Muller CM, Aberg A, Straseviciene J, Emody L, Uhlin BE, et al. (2009) Type 1 fimbriae, a colonization factor of uropathogenic Escherichia coli, are controlled by the metabolic sensor CRP-cAMP. PLoS Pathog 5: e1000303. doi: 10.1371/journal.ppat.1000303 19229313
62. Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, et al. (2003) Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J Biol Chem 278: 29837–29855. 12754220
63. Barbieri NL, Nicholson B, Hussein A, Cai W, Wannemuehler YM, et al. (2014) FNR Regulates Expression of Important Virulence Factors Contributing to Pathogenicity of Uropathogenic Escherichia coli. Infection and Immunity 82: 5086–5098. doi: 10.1128/IAI.02315-14 25245807
64. Gusarov I, Nudler E (2012) S-Nitrosylation Signaling in Escherichia coli. pe26–pe26 p. doi: 10.1126/scisignal.2003181 22692422
65. Seth D, Hausladen A, Wang Y- J, Stamler JS (2012) Endogenous Protein S-Nitrosylation in E. coli: Regulation by OxyR. Science 336: 470–473. doi: 10.1126/science.1215643 22539721
66. Lee AI, Delgado A, Gunsalus RP (1999) Signal-dependent phosphorylation of the membrane-bound NarX two-component sensor-transmitter protein of Escherichia coli: nitrate elicits a superior anion ligand response compared to nitrite. J Bacteriol 181: 5309–5316. 10464202
67. Regev-Shoshani G, Ko M, Miller C, Av-Gay Y (2010) Slow Release of Nitric Oxide from Charged Catheters and Its Effect on Biofilm Formation by Escherichia coli. Antimicrobial Agents and Chemotherapy 54: 273–279. doi: 10.1128/AAC.00511-09 19884372
68. Murphy KC, Campellone KG (2003) Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol Biol 4: 11. 14672541
69. Gaddy JATA, Actis LA. (2009) The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infection and immunity 77: 3150–3160. doi: 10.1128/IAI.00096-09 19470746
70. Aberg V, Norman F, Chorell E, Westermark A, Olofsson A, et al. (2005) Microwave-assisted decarboxylation of bicyclic 2-pyridone scaffolds and identification of Abeta-peptide aggregation inhibitors. Org Biomol Chem 3: 2817–2823. 16032359
71. Guckes KR, Kostakioti M, Breland EJ, Gu AP, Shaffer CL, et al. (2013) Strong cross-system interactions drive the activation of the QseB response regulator in the absence of its cognate sensor. Proc Natl Acad Sci U S A 110: 16592–16597. doi: 10.1073/pnas.1315320110 24062463
72. Anderson DM, Mills D, Spraggins J, Lambert WS, Calkins DJ, et al. (2013) High-resolution matrix-assisted laser desorption ionization-imaging mass spectrometry of lipids in rodent optic nerve tissue. Mol Vis 19: 581–592. 23559852
73. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. 22930834
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 3
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Bacterial Immune Evasion through Manipulation of Host Inhibitory Immune Signaling
- Antimicrobial-Induced DNA Damage and Genomic Instability in Microbial Pathogens
- BILBO1 Is a Scaffold Protein of the Flagellar Pocket Collar in the Pathogen
- Is Antigenic Sin Always “Original?” Re-examining the Evidence Regarding Circulation of a Human H1 Influenza Virus Immediately Prior to the 1918 Spanish Flu